Skip to content
Snippets Groups Projects
Commit 6c2e51cb authored by Danilo Ferreira de Lima's avatar Danilo Ferreira de Lima
Browse files

Deal with both BNN and classical model.

parent 84a1fad5
No related branches found
No related tags found
1 merge request!11Includes input energy parameter in the model and adds non-linearities
This commit is part of merge request !11. Comments created here will be created in the context of that merge request.
...@@ -551,6 +551,7 @@ class Model(TransformerMixin, BaseEstimator): ...@@ -551,6 +551,7 @@ class Model(TransformerMixin, BaseEstimator):
self.fit_model = BNNModel() self.fit_model = BNNModel()
else: else:
self.fit_model = MultiOutputWithStd(BayesianRidge(n_iter=300, tol=1e-8, verbose=True), n_jobs=8) self.fit_model = MultiOutputWithStd(BayesianRidge(n_iter=300, tol=1e-8, verbose=True), n_jobs=8)
self.bnn = bnn
self.kde_xgm = None self.kde_xgm = None
self.mu_xgm = np.nan self.mu_xgm = np.nan
...@@ -912,7 +913,7 @@ class Model(TransformerMixin, BaseEstimator): ...@@ -912,7 +913,7 @@ class Model(TransformerMixin, BaseEstimator):
joblib.dump([self.x_select, joblib.dump([self.x_select,
self.x_model, self.x_model,
self.y_model, self.y_model,
self.fit_model.state_dict(), self.fit_model.state_dict() if self.bnn else self.fit_model,
self.channel_pca, self.channel_pca,
#self.channel_fit_model #self.channel_fit_model
DataHolder(dict( DataHolder(dict(
...@@ -925,6 +926,7 @@ class Model(TransformerMixin, BaseEstimator): ...@@ -925,6 +926,7 @@ class Model(TransformerMixin, BaseEstimator):
resolution=self.resolution, resolution=self.resolution,
transfer_function=self.transfer_function, transfer_function=self.transfer_function,
impulse_response=self.impulse_response, impulse_response=self.impulse_response,
bnn=self.bnn,
) )
), ),
self.ood, self.ood,
...@@ -948,15 +950,8 @@ class Model(TransformerMixin, BaseEstimator): ...@@ -948,15 +950,8 @@ class Model(TransformerMixin, BaseEstimator):
ood, ood,
kde_xgm, kde_xgm,
) = joblib.load(filename) ) = joblib.load(filename)
obj = Model() obj = Model()
obj.x_select = x_select
obj.x_model = x_model
obj.y_model = y_model
obj.fit_model = BNNModel(state_dict=fit_model)
obj.channel_pca = channel_pca
#obj.channel_fit_model = channel_fit_model
obj.ood = ood
obj.kde_xgm = kde_xgm
extra = extra.get_data() extra = extra.get_data()
obj.mu_xgm = extra["mu_xgm"] obj.mu_xgm = extra["mu_xgm"]
...@@ -968,5 +963,19 @@ class Model(TransformerMixin, BaseEstimator): ...@@ -968,5 +963,19 @@ class Model(TransformerMixin, BaseEstimator):
obj.resolution = extra["resolution"] obj.resolution = extra["resolution"]
obj.transfer_function = extra["transfer_function"] obj.transfer_function = extra["transfer_function"]
obj.impulse_response = extra["impulse_response"] obj.impulse_response = extra["impulse_response"]
obj.bnn = extra["bnn"]
obj.x_select = x_select
obj.x_model = x_model
obj.y_model = y_model
if obj.bnn:
obj.fit_model = BNNModel(state_dict=fit_model)
else:
obj.fit_model = fit_model
obj.channel_pca = channel_pca
#obj.channel_fit_model = channel_fit_model
obj.ood = ood
obj.kde_xgm = kde_xgm
return obj return obj
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment