Skip to content
Snippets Groups Projects
Commit 8323a157 authored by Danilo Ferreira de Lima's avatar Danilo Ferreira de Lima
Browse files

Using two pipelines to split more evenly the preprocessing steps.

parent eba3fc96
No related branches found
No related tags found
1 merge request!2Restructured code to use classes compatible with joblib and minimize hacks when saving
......@@ -32,12 +32,11 @@ model.fit(low_resolution_raw_data,
high_resolution_photon_energy)
# save it for later usage:
model.save("model.h5")
model.save("model.joblib")
# when performing inference:
# load a model:
model = Model()
model.load("model.h5")
model = Model.load("model.joblib")
# and use it to map a low-resolution spectrum to a high-resolution one
# as before, the low_resolution_raw_data refers to a dictionary mapping the channel name
......
......@@ -6,11 +6,16 @@ from scipy.signal import fftconvolve
from scipy.signal import find_peaks_cwt
from scipy.optimize import fmin_l_bfgs_b
from sklearn.decomposition import PCA, IncrementalPCA
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.base import TransformerMixin, BaseEstimator
from sklearn.base import RegressorMixin
from sklearn.compose import TransformedTargetRegressor
from itertools import product
from sklearn.model_selection import train_test_split
from time import time_ns
import joblib
import matplotlib.pyplot as plt
from typing import Union, Any, Dict, List, Optional
......@@ -107,89 +112,146 @@ class PromptNotFoundError(Exception):
def __str__(self) -> str:
return "No prompt peak has been detected."
class Model(TransformerMixin, BaseEstimator):
class HighResolutionSmoother(TransformerMixin, BaseEstimator):
"""
Object representing a previous fit of the model to be used to predict high-resolution
spectrum from a low-resolution one.
Smoothens out the high resolution data.
Args:
high_res_sigma: Energy resolution in eV.
"""
def __init__(self,
high_res_sigma: float=0.2
):
self.high_res_sigma = high_res_sigma
self.energy = None
def fit(self, X, y=None, **fit_params) -> TransformerMixin:
"""
Fit records the energy axis.
Args:
X: Irrelevant.
y: Irrelevant.
fit_params: Contains the energy axis in the key "energy" with shape (any, features).
Returns: The object itself.
"""
self.energy = fit_params["energy"]
if len(self.energy.shape) == 2:
self.energy = self.energy[0,:]
return self
def transform(self, X: np.ndarray) -> np.ndarray:
"""
Apply smoothing in X using the energy axis.
Args:
X: Input to smoothen with shape (train id, features).
Returns: Smoothened out spectrum.
"""
# use a default energy axis is none is given
# assume only the energy step
energy = np.broadcast_to(self.energy, X.shape)
# Apply smoothing
n_features = X.shape[1]
# get the centre value of the energy axis
mu = energy[:, n_features//2, np.newaxis]
# generate a gaussian
gaussian = np.exp(-0.5*(energy - mu)**2/self.high_res_sigma**2)
gaussian /= np.sum(gaussian, axis=1, keepdims=True)
# apply it to the data
high_res_gc = fftconvolve(X, gaussian, mode="same", axes=1)
return high_res_gc
class UncertaintyHolder(TransformerMixin, BaseEstimator):
"""
Keep track of uncertainties.
"""
def __init__(self):
self.unc: np.ndarray = np.zeros((1, 0), dtype=float)
def set_uncertainty(self, unc: np.ndarray):
"""
Set the uncertainty.
Args:
unc: The uncertainty.
"""
self.unc = np.copy(unc)
def fit(self, X, y=None) -> TransformerMixin:
"""
Does nothing.
Args:
X: Irrelevant.
y: Irrelevant.
Returns: Itself.
"""
return self
def transform(self, X: np.ndarray) -> np.ndarray:
"""
Identity map.
Args:
X: The input.
"""
return X
def inverse_transform(self, X: np.ndarray) -> np.ndarray:
"""
Identity map.
Args:
X: The input.
"""
return X
def uncertainty(self):
"""The uncertainty recorded."""
return self.unc
class SelectRelevantLowResolution(TransformerMixin, BaseEstimator):
"""
Select only relevant entries in the low-resolution data.
Args:
channels: Selected channels to use as an input for the low resolution data.
n_pca_lr: Number of low-resolution data PCA components.
n_pca_hr: Number of high-resolution data PCA components.
high_res_sigma: Resolution of the high-resolution spectrometer in electron-Volts.
tof_start: Start looking at this index from the low-resolution spectrometer data.
Set to None to perform no selection
delta_tof: Number of components to take from the low-resolution spectrometer.
Set to None to perform no selection.
validation_size: Fraction (number between 0 and 1) of the data to take for
validation and systematic uncertainty estimate.
"""
def __init__(self,
channels:List[str]=[f"channel_{j}_{k}"
for j, k in product(range(1, 5), ["A", "B", "C", "D"])],
n_pca_lr: int=600,
n_pca_hr: int=20,
high_res_sigma: float=0.2,
tof_start: Optional[int]=None,
delta_tof: Optional[int]=300,
validation_size: float=0.05):
):
self.channels = channels
self.n_pca_lr = n_pca_lr
self.n_pca_hr = n_pca_hr
# PCA models
self.lr_pca = PCA(n_pca_lr, whiten=True)
self.hr_pca = PCA(n_pca_hr, whiten=True)
# PCA unc. in high resolution
self.high_pca_unc: np.ndarray = np.zeros((1, 0), dtype=float)
self.low_pca_unc: np.ndarray = np.zeros((1, 0), dtype=float)
# fit model
self.fit_model = FitModel()
# size of the test subset
self.validation_size = validation_size
# where to cut on the ToF PES data
self.tof_start = tof_start
self.delta_tof = delta_tof
# high-resolution photon energy axis
self.high_res_photon_energy: Optional[np.ndarray] = None
# smoothing of the SPEC data in eV
self.high_res_sigma = high_res_sigma
def parameters(self) -> Dict[str, Any]:
"""
Dump parameters as a dictionary.
"""
return dict(channels=self.channels,
n_pca_lr=self.n_pca_lr,
n_pca_hr=self.n_pca_hr,
high_res_sigma=self.high_res_sigma,
tof_start=self.tof_start,
delta_tof=self.delta_tof,
validation_size=self.validation_size,
high_pca_unc=self.high_pca_unc,
low_pca_unc=self.low_pca_unc,
high_res_photon_energy=self.high_res_photon_energy,
)
def preprocess_low_res(self, low_res_data: Dict[str, np.ndarray]) -> np.ndarray:
def transform(self, X: Dict[str, np.ndarray]) -> np.ndarray:
"""
Get a dictionary with the channel names for the inut low resolution data and output
only the relevant input data in an array.
Args:
low_res_data: Dictionary with keys named channel_{i}_{k},
where i is a number between 1 and 4 and k is a letter between A and D.
X: Dictionary with keys named channel_{i}_{k},
where i is a number between 1 and 4 and k is a letter between A and D.
Returns: Concatenated and pre-processed low-resolution data of shape (train_id, features).
"""
items = [low_res_data[k] for k in self.channels]
if self.tof_start is None:
raise NotImplementedError("The low-resolution data cannot be transformed before the prompt has been identified. Call the fit function first.")
items = [X[k] for k in self.channels]
if self.delta_tof is not None:
items = [item[:, self.tof_start:(self.tof_start + self.delta_tof)] for item in items]
else:
......@@ -197,37 +259,17 @@ class Model(TransformerMixin, BaseEstimator):
cat = np.concatenate(items, axis=1)
return cat
def preprocess_high_res(self, high_res_data: np.ndarray, high_res_photon_energy: np.ndarray) -> np.ndarray:
"""
Get the high resolution data and preprocess it.
Args:
high_res_data: High resolution data with shape (train_id, features).
high_res_photon_energy: High resolution photon energy values
(the "x"-axis of the high resolution data) with
shape (train_id, features).
Returns: Pre-processed high-resolution data of shape (train_id, features) before.
"""
# Apply smoothing
n_features = high_res_data.shape[1]
mu = high_res_photon_energy[:, n_features//2, np.newaxis]
gaussian = np.exp(-0.5*(high_res_photon_energy - mu)**2/self.high_res_sigma**2)
gaussian /= np.sum(gaussian, axis=1, keepdims=True)
high_res_gc = fftconvolve(high_res_data, gaussian, mode="same", axes=1)
return high_res_gc
def estimate_prompt_peak(self, low_res_data: Dict[str, np.ndarray]) -> int:
def estimate_prompt_peak(self, X: Dict[str, np.ndarray]) -> int:
"""
Estimate the prompt peak index.
Args:
low_res_data: Low resolution data with a dictionary containing the channel names.
X: Low resolution data with a dictionary containing the channel names.
Returns: The prompt peak index.
Returns: The index.
"""
# reduce on channel and on train ID
sum_low_res = - np.mean(sum(list(low_res_data.values())), axis=0)
sum_low_res = - np.mean(sum(list(X.values())), axis=0)
widths = np.arange(10, 50, step=1)
peak_idx = find_peaks_cwt(sum_low_res, widths)
if len(peak_idx) < 1:
......@@ -242,17 +284,30 @@ class Model(TransformerMixin, BaseEstimator):
improved_guess = min_search + int(np.argmax(restricted_arr))
return improved_guess
def debug_peak_finding(self, low_res_data: Dict[str, np.ndarray], filename: str):
def fit(self, X: Dict[str, np.ndarray], y: Optional[Any]=None) -> TransformerMixin:
"""
Estimate the prompt peak index.
Args:
X: Low resolution data with a dictionary containing the channel names.
y: Ignored.
Returns: The object itself.
"""
self.tof_start = self.estimate_prompt_peak(X)
return self
def debug_peak_finding(self, X: Dict[str, np.ndarray], filename: str):
"""
Produce image to understand if the peak finding step worked well.
Args:
low_res_data: Low resolution data with a dictionary containing the channel names.
X: Low resolution data with a dictionary containing the channel names.
filename: The file name where to save the plot.
"""
sum_low_res = - np.mean(sum(list(low_res_data.values())), axis=0)
peak_idx = self.estimate_prompt_peak(low_res_data)
sum_low_res = - np.mean(sum(list(X.values())), axis=0)
peak_idx = self.estimate_prompt_peak(X)
fig = plt.figure(figsize=(8, 16))
ax = plt.gca()
ax.plot(np.arange(peak_idx-100, peak_idx+300),
......@@ -271,178 +326,7 @@ class Model(TransformerMixin, BaseEstimator):
plt.savefig(filename)
plt.close(fig)
def fit(self, low_res_data: Dict[str, np.ndarray], high_res_data: np.ndarray, high_res_photon_energy: np.ndarray) -> np.ndarray:
"""
Train the model.
Args:
low_res_data: Low resolution data as a dictionary with the key set to `channel_{i}_{k}`,
where i is a number between 1 and 4 and k is a letter between A and D.
For each dictionary entry, a numpy array is expected with shape
(train_id, ToF channel).
high_res_data: Reference high resolution data with a one-to-one match to the
low resolution data in the train_id dimension. Shape (train_id, ToF channel).
high_res_photon_energy: Photon energy axis for the high-resolution data.
Returns: Smoothened high resolution spectrum.
"""
self.high_res_photon_energy = high_res_photon_energy[0, np.newaxis, :]
# if the prompt peak has not been given, guess it
if self.tof_start is None:
self.tof_start = self.estimate_prompt_peak(low_res_data)
low_res = self.preprocess_low_res(low_res_data)
high_res = self.preprocess_high_res(high_res_data, high_res_photon_energy)
# fit PCA
low_pca = self.lr_pca.fit_transform(low_res)
high_pca = self.hr_pca.fit_transform(high_res)
# split in train and test for PCA uncertainty evaluation
(low_pca_train, low_pca_test,
high_pca_train, high_pca_test) = train_test_split(low_pca, high_pca,
test_size=self.validation_size,
random_state=42)
# fit the linear model
self.fit_model.fit(low_pca_train,
high_pca_train,
low_pca_test,
high_pca_test)
high_pca_rec = self.hr_pca.inverse_transform(high_pca)
self.high_pca_unc = np.sqrt(np.mean((high_res - high_pca_rec)**2, axis=0, keepdims=True))
low_pca_rec = self.lr_pca.inverse_transform(low_pca)
self.low_pca_unc = np.mean(np.sqrt(np.mean((low_res - low_pca_rec)**2, axis=1, keepdims=True)), axis=0, keepdims=True)
return high_res
def check_compatibility(self, low_res_data: Dict[str, np.ndarray]) -> float:
"""
Check if a new low-resolution data source is compatible with the one used in training, by
comparing the effect of the trained PCA model on it.
Args:
low_res_data: Low resolution data as in the fit step with shape (train_id, channel, ToF channel).
Returns: Ratio of root-mean-squared-error of the data reconstruction using the existing PCA model and the one from the original model.
"""
low_res = self.preprocess_low_res(low_res_data)
low_pca = self.lr_pca.transform(low_res)
low_pca_rec = self.lr_pca.inverse_transform(low_pca)
#fig = plt.figure(figsize=(8, 16))
#ax = plt.gca()
#ax.plot(low_res[0,...],
# c="b",
# label="LR")
#ax.plot(low_pca_rec[0,...],
# c="r",
# label="LR rec.")
#ax.set(title="",
# xlabel="Photon Spectrometer channel",
# ylabel="Low resolution spectrometer intensity")
#ax.legend()
#plt.savefig("check.png")
#plt.close(fig)
low_pca_unc = np.sqrt(np.mean((low_res - low_pca_rec)**2, axis=1, keepdims=True))
return low_pca_unc/self.low_pca_unc
def predict(self, low_res_data: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
"""
Predict a high-resolution spectrum from a low resolution given one.
The output includes the uncertainty in its second and third entries of the first dimension.
Args:
low_res_data: Low resolution data as in the fit step with shape (train_id, channel, ToF channel).
Returns: High resolution data with shape (train_id, energy channel) in a dictionary containing
the expected prediction in key "expected", the stat. uncertainty in key "unc" and
a (1, energy channel) array for the PCA syst. uncertainty in key "pca".
"""
low_res = self.preprocess_low_res(low_res_data)
low_pca = self.lr_pca.transform(low_res)
# Get high res.
high_pca = self.fit_model.predict(low_pca)
n_trains = low_pca.shape[0]
pca_y = np.concatenate((high_pca["Y"],
high_pca["Y"] + high_pca["Y_eps"]),
axis=0)
high_res_predicted = self.hr_pca.inverse_transform(pca_y)
expected = high_res_predicted[:n_trains, :]
unc = high_res_predicted[n_trains:, :] - expected
return dict(expected=expected,
unc=unc,
pca=self.high_pca_unc)
def save(self, filename: str):
"""
Save the fit model in a file.
Args:
filename: H5 file name where to save this.
"""
#joblib.dump(self, filename)
with h5py.File(filename, 'w') as hf:
# transform parameters into a dict
d = self.fit_model.as_dict()
d.update(self.parameters())
# dump them in the file
dump_in_group(d, hf)
# this is not ideal, because it depends on the knowledge of the PCA
# object structure, but saving to a joblib file would mean creating several
# files
# create a group
lr_pca = hf.create_group("lr_pca")
# get PCA properties
lr_pca_props = get_pca_props(self.lr_pca)
# create the HR group
hr_pca = hf.create_group("hr_pca")
# get PCA properties
hr_pca_props = get_pca_props(self.hr_pca)
# dump them
dump_in_group(lr_pca_props, lr_pca)
dump_in_group(hr_pca_props, hr_pca)
def load(self, filename: str):
"""
Load model from a file.
Args:
filename: Name of the file where to read the model from.
"""
with h5py.File(filename, 'r') as hf:
# read from file
d = read_from_group(hf)
# load fit_model parameters
self.fit_model.from_dict(d)
# load parameters of this class
for key in self.parameters().keys():
value = d[key]
if key == 'channels':
value = [item.decode() if isinstance(item, bytes)
else item
for item in value]
setattr(self, key, value)
# this is not ideal, because it depends on the knowledge of the PCA
# object structure, but saving to a joblib file would mean creating several
# files
lr_pca = hf["/lr_pca/"]
hr_pca = hf["/hr_pca/"]
self.lr_pca = PCA(self.n_pca_lr, whiten=True)
self.hr_pca = PCA(self.n_pca_hr, whiten=True)
# read properties in dictionaries
lr_pca_props = read_from_group(lr_pca)
hr_pca_props = read_from_group(hr_pca)
# set them
self.lr_pca = set_pca_props(self.lr_pca, lr_pca_props)
self.hr_pca = set_pca_props(self.hr_pca, hr_pca_props)
class FitModel(object):
class FitModel(RegressorMixin, BaseEstimator):
"""
Linear regression model with uncertainties.
"""
......@@ -462,14 +346,27 @@ class FitModel(object):
self.input_data = None
def fit(self, X_train: np.ndarray, Y_train: np.ndarray, X_test: np.ndarray, Y_test: np.ndarray):
def fit(self, X: np.ndarray, y: np.ndarray, **fit_params) -> RegressorMixin:
"""
Perform the fit and evaluate uncertainties with the test set.
Args:
X: The input.
y: The target.
fit_params: If it contains X_test and y_test, they are used to validate the model.
Returns: The object itself.
"""
if 'X_test' in fit_params and 'y_test' in fit_params:
X_test = fit_params['X_test']
y_test = fit_params['y_test']
else:
X_test = X
y_test = y
# model parameter sizes
self.Nx: int = int(X_train.shape[1])
self.Ny: int = int(Y_train.shape[1])
self.Nx: int = int(X.shape[1])
self.Ny: int = int(y.shape[1])
# initial parameter values
A0: np.ndarray = np.eye(self.Nx, self.Ny).reshape(self.Nx*self.Ny)
......@@ -515,8 +412,8 @@ class FitModel(object):
Returns: The loss value.
"""
l_train = loss(x, X_train, Y_train)
l_test = loss(x, X_test, Y_test)
l_train = loss(x, X, y)
l_test = loss(x, X_test, y_test)
self.loss_train += [l_train]
self.loss_test += [l_test]
......@@ -531,7 +428,7 @@ class FitModel(object):
Returns: The loss value.
"""
l_train = loss(x, X_train, Y_train)
l_train = loss(x, X, y)
return l_train
grad_loss = grad(loss_train)
......@@ -603,3 +500,188 @@ class FitModel(object):
result["Y_eps"] = np.exp(X @ self.A_eps + result["Y_unc"])
return result
class Model(TransformerMixin, BaseEstimator):
"""
Object representing a previous fit of the model to be used to predict high-resolution
spectrum from a low-resolution one.
Args:
channels: Selected channels to use as an input for the low resolution data.
n_pca_lr: Number of low-resolution data PCA components.
n_pca_hr: Number of high-resolution data PCA components.
high_res_sigma: Resolution of the high-resolution spectrometer in electron-Volts.
tof_start: Start looking at this index from the low-resolution spectrometer data.
Set to None to perform no selection
delta_tof: Number of components to take from the low-resolution spectrometer.
Set to None to perform no selection.
validation_size: Fraction (number between 0 and 1) of the data to take for
validation and systematic uncertainty estimate.
"""
def __init__(self,
channels:List[str]=[f"channel_{j}_{k}"
for j, k in product(range(1, 5), ["A", "B", "C", "D"])],
n_pca_lr: int=600,
n_pca_hr: int=20,
high_res_sigma: float=0.2,
tof_start: Optional[int]=None,
delta_tof: Optional[int]=300,
validation_size: float=0.05):
# models
self.x_model = Pipeline([
('select', SelectRelevantLowResolution(channels, tof_start, delta_tof)),
('pca', PCA(n_pca_lr, whiten=True)),
('unc', UncertaintyHolder()),
])
self.y_model = Pipeline([('smoothen', HighResolutionSmoother(high_res_sigma)),
('pca', PCA(n_pca_hr, whiten=True)),
('unc', UncertaintyHolder()),
])
self.fit_model = FitModel()
# size of the test subset
self.validation_size = validation_size
def debug_peak_finding(self, low_res_data: Dict[str, np.ndarray], filename: str):
"""
Produce image to understand if the peak finding step worked well.
Args:
low_res_data: Low resolution data with a dictionary containing the channel names.
filename: The file name where to save the plot.
"""
self.x_model['select'].debug_peak_finding(low_res_data, filename)
def preprocess_high_res(self, high_res_data: np.ndarray) -> np.ndarray:
"""
Preprocess high-resolution data to remove high requency components.
Args:
high_res_data: The high-resolution data.
Returns: Smoothened spectrum.
"""
return self.y_model['smoothen'].transform(high_res_data)
def fit(self, low_res_data: Dict[str, np.ndarray], high_res_data: np.ndarray, high_res_photon_energy: np.ndarray) -> np.ndarray:
"""
Train the model.
Args:
low_res_data: Low resolution data as a dictionary with the key set to `channel_{i}_{k}`,
where i is a number between 1 and 4 and k is a letter between A and D.
For each dictionary entry, a numpy array is expected with shape
(train_id, ToF channel).
high_res_data: Reference high resolution data with a one-to-one match to the
low resolution data in the train_id dimension. Shape (train_id, ToF channel).
high_res_photon_energy: Photon energy axis for the high-resolution data.
Returns: Smoothened high resolution spectrum.
"""
x_t = self.x_model.fit_transform(low_res_data)
y_t = self.y_model.fit_transform(high_res_data, smoothen__energy=high_res_photon_energy)
self.fit_model.fit(x_t, y_t)
# calculate the effect of the PCA
high_res = self.y_model['smoothen'].transform(high_res_data)
high_pca = self.y_model.transform(high_res_data)
high_pca_rec = self.y_model['pca'].inverse_transform(high_pca)
high_pca_unc = np.sqrt(np.mean((high_res - high_pca_rec)**2, axis=0, keepdims=True))
self.y_model['unc'].set_uncertainty(high_pca_unc)
low_res = self.x_model['select'].transform(low_res_data)
low_pca = self.x_model['pca'].transform(low_res)
low_pca_rec = self.x_model['pca'].inverse_transform(low_pca)
low_pca_unc = np.mean(np.sqrt(np.mean((low_res - low_pca_rec)**2, axis=1, keepdims=True)), axis=0, keepdims=True)
self.x_model['unc'].set_uncertainty(low_pca_unc)
return high_res
def check_compatibility(self, low_res_data: Dict[str, np.ndarray]) -> float:
"""
Check if a new low-resolution data source is compatible with the one used in training, by
comparing the effect of the trained PCA model on it.
Args:
low_res_data: Low resolution data as in the fit step with shape (train_id, channel, ToF channel).
Returns: Ratio of root-mean-squared-error of the data reconstruction using the existing PCA model and the one from the original model.
"""
low_res = self.x_model['select'].transform(low_res_data)
low_pca = self.x_model['pca'].transform(low_res_data)
low_pca_rec = self.x_model['pca'].inverse_transform(low_pca)
low_pca_unc = self.x_model['unc'].uncertainty()
#fig = plt.figure(figsize=(8, 16))
#ax = plt.gca()
#ax.plot(low_res[0,...],
# c="b",
# label="LR")
#ax.plot(low_pca_rec[0,...],
# c="r",
# label="LR rec.")
#ax.set(title="",
# xlabel="Photon Spectrometer channel",
# ylabel="Low resolution spectrometer intensity")
#ax.legend()
#plt.savefig("check.png")
#plt.close(fig)
low_pca_unc = np.sqrt(np.mean((low_res - low_pca_rec)**2, axis=1, keepdims=True))
return low_pca_unc/low_pca_unc
def predict(self, low_res_data: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
"""
Predict a high-resolution spectrum from a low resolution given one.
The output includes the uncertainty in its second and third entries of the first dimension.
Args:
low_res_data: Low resolution data as in the fit step with shape (train_id, channel, ToF channel).
Returns: High resolution data with shape (train_id, energy channel) in a dictionary containing
the expected prediction in key "expected", the stat. uncertainty in key "unc" and
a (1, energy channel) array for the PCA syst. uncertainty in key "pca".
"""
low_pca = self.x_model.transform(low_res_data)
high_pca = self.fit_model.predict(low_pca)
n_trains = high_pca["Y"].shape[0]
pca_y = np.concatenate((high_pca["Y"],
high_pca["Y"] + high_pca["Y_eps"]),
axis=0)
high_res_predicted = self.y_model.inverse_transform(pca_y)
expected = high_res_predicted[:n_trains, :]
unc = high_res_predicted[n_trains:, :] - expected
return dict(expected=expected,
unc=unc,
pca=self.y_model['unc'].uncertainty())
def save(self, filename: str):
"""
Save the fit model in a file.
Args:
filename: File name where to save this.
"""
joblib.dump([self.x_model,
self.y_model,
self.fit_model],
filename)
@staticmethod
def load(filename: str) -> Model:
"""
Load model from a file.
Args:
filename: Name of the file where to read the model from.
"""
x_model, y_model, fit_model = joblib.load(filename)
obj = Model()
obj.x_model = x_model
obj.y_model = y_model
obj.fit_model = fit_model
......@@ -139,18 +139,17 @@ def main():
spec_raw_pe[train_idx, :])
t += [time_ns() - start]
t_names += ["Fit"]
spec_smooth = model.preprocess_high_res(spec_raw_int, spec_raw_pe)
spec_smooth = model.preprocess_high_res(spec_raw_int)
print("Saving the model")
start = time_ns()
model.save("model.h5")
model.save("model.joblib")
t += [time_ns() - start]
t_names += ["Save"]
print("Loading the model")
start = time_ns()
model = Model()
model.load("model.h5")
model = Model.load("model.joblib")
t += [time_ns() - start]
t_names += ["Load"]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment