Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pes_to_spec
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Machine Learning projects.
pes_to_spec
Commits
cec2b7ba
Commit
cec2b7ba
authored
1 year ago
by
Danilo Ferreira de Lima
Browse files
Options
Downloads
Patches
Plain Diff
Added resolution estimate.
parent
abed8003
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pes_to_spec/model.py
+40
-5
40 additions, 5 deletions
pes_to_spec/model.py
with
40 additions
and
5 deletions
pes_to_spec/model.py
+
40
−
5
View file @
cec2b7ba
...
@@ -3,6 +3,7 @@ from __future__ import annotations
...
@@ -3,6 +3,7 @@ from __future__ import annotations
import
joblib
import
joblib
import
numpy
as
np
import
numpy
as
np
import
lmfit
from
scipy.signal
import
fftconvolve
from
scipy.signal
import
fftconvolve
from
sklearn.decomposition
import
IncrementalPCA
,
PCA
from
sklearn.decomposition
import
IncrementalPCA
,
PCA
from
sklearn.base
import
TransformerMixin
,
BaseEstimator
from
sklearn.base
import
TransformerMixin
,
BaseEstimator
...
@@ -32,6 +33,36 @@ def matching_two_ids(a: np.ndarray, b: np.ndarray) -> np.ndarray:
...
@@ -32,6 +33,36 @@ def matching_two_ids(a: np.ndarray, b: np.ndarray) -> np.ndarray:
unique_ids
=
list
(
set
(
a
).
intersection
(
b
))
unique_ids
=
list
(
set
(
a
).
intersection
(
b
))
return
np
.
array
(
unique_ids
)
return
np
.
array
(
unique_ids
)
def
fwhm
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
)
->
float
:
"""
Return the full width at half maximum of x.
"""
# half maximum
half_max
=
np
.
amax
(
y
)
*
0.5
# signum(y - half_max) is zero before and after the half maximum,
# and it is 1 in the range above the half maximum
# The difference will be +/- 1 only at the transitions
d
=
np
.
diff
(
np
.
sign
(
y
-
half_max
))
left_idx
=
np
.
where
(
d
>
0
)[
0
]
right_idx
=
np
.
where
(
d
<
0
)[
-
1
]
return
x
[
right_idx
]
-
x
[
left_idx
]
def
get_resolution
(
x
:
np
.
ndarray
,
y
:
np
.
ndarray
)
->
float
:
"""
Get resolution from an auto-correlation function y.
Args:
x: Energy axis, assumed centred at 0, symmetric and equally spaced.
y: Auto-correlation function.
"""
def
gaussian_model
(
x
,
amp
,
cen
,
wid
):
"""
Gaussian.
"""
return
amp
*
np
.
exp
(
-
0.5
*
(
x
-
cen
)
**
2
/
(
wid
**
2
))
gmodel
=
lmfit
.
Model
(
gaussian_model
)
first
=
np
.
where
(
x
>
-
0.5
)[
0
][
0
]
last
=
np
.
where
(
x
>
0.5
)[
0
][
0
]
initial_guess
=
0.1
# eV
result
=
gmodel
.
fit
(
y
[
first
:
last
],
x
=
x
[
first
:
last
],
amp
=
1.0
,
cen
=
0.0
,
wid
=
initial_guess
)
return
2.355
*
result
.
best_values
[
"
wid
"
]
class
PromptNotFoundError
(
Exception
):
class
PromptNotFoundError
(
Exception
):
"""
"""
Exception representing the error condition generated by not finding the prompt peak.
Exception representing the error condition generated by not finding the prompt peak.
...
@@ -91,7 +122,8 @@ class HighResolutionSmoother(TransformerMixin, BaseEstimator):
...
@@ -91,7 +122,8 @@ class HighResolutionSmoother(TransformerMixin, BaseEstimator):
# get the centre value of the energy axis
# get the centre value of the energy axis
mu
=
energy
[:,
n_features
//
2
,
np
.
newaxis
]
mu
=
energy
[:,
n_features
//
2
,
np
.
newaxis
]
# generate a gaussian
# generate a gaussian
gaussian
=
np
.
exp
(
-
0.5
*
(
energy
-
mu
)
**
2
/
self
.
high_res_sigma
**
2
)
std
=
self
.
high_res_sigma
*
2.355
gaussian
=
np
.
exp
(
-
0.5
*
(
energy
-
mu
)
**
2
/
std
**
2
)
gaussian
/=
np
.
sum
(
gaussian
,
axis
=
1
,
keepdims
=
True
)
gaussian
/=
np
.
sum
(
gaussian
,
axis
=
1
,
keepdims
=
True
)
# apply it to the data
# apply it to the data
high_res_gc
=
fftconvolve
(
X
,
gaussian
,
mode
=
"
same
"
,
axes
=
1
)
high_res_gc
=
fftconvolve
(
X
,
gaussian
,
mode
=
"
same
"
,
axes
=
1
)
...
@@ -873,11 +905,14 @@ class Model(TransformerMixin, BaseEstimator):
...
@@ -873,11 +905,14 @@ class Model(TransformerMixin, BaseEstimator):
self
.
wiener_energy_ft
=
E
self
.
wiener_energy_ft
=
E
self
.
transfer_function
=
H
self
.
transfer_function
=
H
h
=
np
.
fft
.
fftshift
(
np
.
fft
.
ifft
(
H
))
h
=
np
.
fft
.
fftshift
(
np
.
fft
.
ifft
(
H
))
hmod
=
np
.
real
(
np
.
absolute
(
h
))
self
.
impulse_response
=
h
self
.
impulse_response
=
h
energy_mu
=
np
.
sum
(
e_axis
*
hmod
)
/
np
.
sum
(
hmod
)
self
.
auto_corr
=
np
.
mean
(
np
.
fft
.
fftshift
(
np
.
fft
.
ifft
(
np
.
absolute
(
np
.
fft
.
fft
(
z
))
**
2
),
axes
=
(
-
1
,)),
axis
=
0
)
energy_var
=
np
.
sum
(((
e_axis
-
energy_mu
)
**
2
)
*
hmod
)
/
np
.
sum
(
hmod
)
self
.
auto_corr
=
np
.
real
(
self
.
auto_corr
)
self
.
resolution
=
np
.
sqrt
(
energy_var
)
self
.
auto_corr
/=
np
.
amax
(
self
.
auto_corr
)
try
:
self
.
resulution
=
get_resolution
(
e_axis
,
self
.
auto_corr
)
finally
:
self
.
resolution
=
-
1.0
#print("Resolution:", self.resolution)
#print("Resolution:", self.resolution)
# for consistency check per channel
# for consistency check per channel
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment