Skip to content
Snippets Groups Projects

Speed up prediction and outlier detection.

Merged Danilo Enoque Ferreira de Lima requested to merge speedup into main
1 file
+ 5
5
Compare changes
  • Side-by-side
  • Inline
+ 5
5
@@ -937,13 +937,13 @@ class Model(TransformerMixin, BaseEstimator):
E = np.fft.fftfreq(len(e), de)
e_axis = np.linspace(-0.5*(e[-1] - e[0]), 0.5*(e[-1] - e[0]), len(e))
# generate a gaussian
gaussian = np.exp(-0.5*(e_axis)**2/self.high_res_sigma**2)
gaussian /= np.sum(gaussian, axis=0, keepdims=True)
gaussian = np.clip(gaussian, a_min=1e-6, a_max=None)
gaussian_ft = np.fft.fft(gaussian)
#gaussian = np.exp(-0.5*(e_axis)**2/self.high_res_sigma**2)
#gaussian /= np.sum(gaussian, axis=0, keepdims=True)
#gaussian = np.clip(gaussian, a_min=1e-6, a_max=None)
#gaussian_ft = np.fft.fft(gaussian)
H = np.mean(Z/D, axis=0)
N = np.absolute(gaussian_ft*V)**2
N = np.absolute(V)**2
S = np.mean(np.absolute(D)**2, axis=0)
H2 = np.absolute(H)**2
nonzero = np.absolute(H) > 0.2
Loading