Speed up prediction and outlier detection.
Compare changes
- Danilo Ferreira de Lima authored
Using threading for parallel processing speeds up prediction by a factor of 100: most of the time consumed was on passing data to the processes. Switched from the EllipticEnvelope to an IQR-based outlier detection method -- faster and does not assume Gaussianity. Since this happens after the PCA, the data is already decorrelated.
+ 41
− 16
@@ -14,10 +14,11 @@ from sklearn.pipeline import Pipeline
@@ -637,7 +638,7 @@ class MultiOutputWithStd(MetaEstimatorMixin, BaseEstimator):
@@ -652,7 +653,7 @@ class UncorrelatedDeviation(OutlierMixin, BaseEstimator):
@@ -661,20 +662,19 @@ class UncorrelatedDeviation(OutlierMixin, BaseEstimator):
@@ -685,7 +685,9 @@ class UncorrelatedDeviation(OutlierMixin, BaseEstimator):
@@ -700,9 +702,10 @@ class UncorrelatedDeviation(OutlierMixin, BaseEstimator):
@@ -781,10 +784,10 @@ class Model(TransformerMixin, BaseEstimator):
@@ -1080,23 +1083,45 @@ class Model(TransformerMixin, BaseEstimator):