Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Commits
e6252937
Commit
e6252937
authored
2 years ago
by
Martin Teichmann
Browse files
Options
Downloads
Patches
Plain Diff
inline the centroid into the hRIXS class
parent
538f771c
No related branches found
No related tags found
1 merge request
!233
improve the centroiding code
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/toolbox_scs/detectors/hrixs.py
+45
-70
45 additions, 70 deletions
src/toolbox_scs/detectors/hrixs.py
with
45 additions
and
70 deletions
src/toolbox_scs/detectors/hrixs.py
+
45
−
70
View file @
e6252937
...
@@ -171,64 +171,6 @@ THRESHOLD = 510 # pixel counts above which a hit candidate is assumed
...
@@ -171,64 +171,6 @@ THRESHOLD = 510 # pixel counts above which a hit candidate is assumed
CURVE_A
=
2.19042931e-02
# curvature parameters as determined elsewhere
CURVE_A
=
2.19042931e-02
# curvature parameters as determined elsewhere
CURVE_B
=
-
3.02191568e-07
CURVE_B
=
-
3.02191568e-07
def
_esrf_centroid
(
image
,
threshold
=
THRESHOLD
,
curvature
=
(
CURVE_A
,
CURVE_B
)):
gs
=
2
base
=
image
.
mean
()
cp
=
np
.
argwhere
(
image
[
gs
//
2
:
-
gs
//
2
,
gs
//
2
:
-
gs
//
2
]
>
threshold
)
+
np
.
array
([
gs
//
2
,
gs
//
2
])
if
len
(
cp
)
>
100000
:
raise
RuntimeError
(
'
Threshold too low or acquisition time too long
'
)
res
=
[]
for
cy
,
cx
in
cp
:
spot
=
image
[
cy
-
gs
//
2
:
cy
+
gs
//
2
+
1
,
cx
-
gs
//
2
:
cx
+
gs
//
2
+
1
]
-
base
spot
[
spot
<
0
]
=
0
if
(
spot
>
image
[
cy
,
cx
]).
sum
()
==
0
:
mx
=
np
.
average
(
np
.
arange
(
cx
-
gs
//
2
,
cx
+
gs
//
2
+
1
),
weights
=
spot
.
sum
(
axis
=
0
))
my
=
np
.
average
(
np
.
arange
(
cy
-
gs
//
2
,
cy
+
gs
//
2
+
1
),
weights
=
spot
.
sum
(
axis
=
1
))
my
-=
(
curvature
[
0
]
+
curvature
[
1
]
*
mx
)
*
mx
res
.
append
((
my
,
mx
))
return
res
def
_new_centroid
(
image
,
threshold
=
THRESHOLD
,
std_threshold
=
3.5
,
curvature
=
(
CURVE_A
,
CURVE_B
)):
"""
find the position of photons with sub-pixel precision
A photon is supposed to have hit the detector if the intensity within a
2-by-2 square exceeds a threshold. In this case the position of the photon
is calculated as the center-of-mass in a 4-by-4 square.
Return the list of x,y coordinate pairs, corrected by the curvature.
"""
base
=
image
.
mean
()
corners
=
image
[
1
:,
1
:]
+
image
[:
-
1
,
1
:]
+
image
[
1
:,
:
-
1
]
+
image
[:
-
1
,
:
-
1
]
if
threshold
is
None
:
threshold
=
corners
.
mean
()
+
std_threshold
*
corners
.
std
()
middle
=
corners
[
1
:
-
1
,
1
:
-
1
]
candidates
=
(
(
middle
>
threshold
)
*
(
middle
>=
corners
[:
-
2
,
1
:
-
1
])
*
(
middle
>
corners
[
2
:,
1
:
-
1
])
*
(
middle
>=
corners
[
1
:
-
1
,
:
-
2
])
*
(
middle
>
corners
[
1
:
-
1
,
2
:])
*
(
middle
>=
corners
[:
-
2
,
:
-
2
])
*
(
middle
>
corners
[
2
:,
:
-
2
])
*
(
middle
>=
corners
[:
-
2
,
2
:])
*
(
middle
>
corners
[
2
:,
2
:]))
cp
=
np
.
argwhere
(
candidates
)
if
len
(
cp
)
>
10000
:
raise
RuntimeError
(
"
too many peaks, threshold too low or acquisition time too high
"
)
res
=
[]
for
cy
,
cx
in
cp
:
spot
=
image
[
cy
:
cy
+
4
,
cx
:
cx
+
4
]
-
base
mx
=
np
.
average
(
np
.
arange
(
cx
,
cx
+
4
),
weights
=
spot
.
sum
(
axis
=
0
))
my
=
np
.
average
(
np
.
arange
(
cy
,
cy
+
4
),
weights
=
spot
.
sum
(
axis
=
1
))
my
-=
(
curvature
[
0
]
+
curvature
[
1
]
*
mx
)
*
mx
res
.
append
((
my
,
mx
))
return
res
centroid
=
_new_centroid
def
decentroid
(
res
):
def
decentroid
(
res
):
res
=
np
.
array
(
res
)
res
=
np
.
array
(
res
)
ret
=
np
.
zeros
(
shape
=
(
res
.
max
(
axis
=
0
)
+
1
).
astype
(
int
))
ret
=
np
.
zeros
(
shape
=
(
res
.
max
(
axis
=
0
)
+
1
).
astype
(
int
))
...
@@ -410,6 +352,42 @@ class hRIXS:
...
@@ -410,6 +352,42 @@ class hRIXS:
self
.
CURVE_B
,
self
.
CURVE_A
,
*
_
=
args
self
.
CURVE_B
,
self
.
CURVE_A
,
*
_
=
args
return
self
.
CURVE_A
,
self
.
CURVE_B
return
self
.
CURVE_A
,
self
.
CURVE_B
def
centroid_one
(
self
,
image
):
"""
find the position of photons with sub-pixel precision
A photon is supposed to have hit the detector if the intensity within a
2-by-2 square exceeds a threshold. In this case the position of the photon
is calculated as the center-of-mass in a 4-by-4 square.
Return the list of x, y coordinate pairs, corrected by the curvature.
"""
base
=
image
.
mean
()
corners
=
image
[
1
:,
1
:]
+
image
[:
-
1
,
1
:]
\
+
image
[
1
:,
:
-
1
]
+
image
[:
-
1
,
:
-
1
]
if
self
.
THRESHOLD
is
None
:
threshold
=
corners
.
mean
()
+
self
.
STD_THRESHOLD
*
corners
.
std
()
else
:
threshold
=
self
.
THRESHOLD
middle
=
corners
[
1
:
-
1
,
1
:
-
1
]
candidates
=
(
(
middle
>
threshold
)
*
(
middle
>=
corners
[:
-
2
,
1
:
-
1
])
*
(
middle
>
corners
[
2
:,
1
:
-
1
])
*
(
middle
>=
corners
[
1
:
-
1
,
:
-
2
])
*
(
middle
>
corners
[
1
:
-
1
,
2
:])
*
(
middle
>=
corners
[:
-
2
,
:
-
2
])
*
(
middle
>
corners
[
2
:,
:
-
2
])
*
(
middle
>=
corners
[:
-
2
,
2
:])
*
(
middle
>
corners
[
2
:,
2
:]))
cp
=
np
.
argwhere
(
candidates
)
if
len
(
cp
)
>
10000
:
raise
RuntimeError
(
"
too many peaks, threshold low or acquisition time too high
"
)
res
=
[]
for
cy
,
cx
in
cp
:
spot
=
image
[
cy
:
cy
+
4
,
cx
:
cx
+
4
]
-
base
mx
=
np
.
average
(
np
.
arange
(
cx
,
cx
+
4
),
weights
=
spot
.
sum
(
axis
=
0
))
my
=
np
.
average
(
np
.
arange
(
cy
,
cy
+
4
),
weights
=
spot
.
sum
(
axis
=
1
))
res
.
append
((
mx
,
my
))
return
res
def
centroid
(
self
,
data
,
bins
=
None
):
def
centroid
(
self
,
data
,
bins
=
None
):
"""
calculate a spectrum by finding the centroid of individual photons
"""
calculate a spectrum by finding the centroid of individual photons
...
@@ -427,23 +405,20 @@ class hRIXS:
...
@@ -427,23 +405,20 @@ class hRIXS:
bins
=
self
.
BINS
bins
=
self
.
BINS
ret
=
np
.
zeros
((
len
(
data
[
"
hRIXS_det
"
]),
bins
))
ret
=
np
.
zeros
((
len
(
data
[
"
hRIXS_det
"
]),
bins
))
for
image
,
r
in
zip
(
data
[
"
hRIXS_det
"
],
ret
):
for
image
,
r
in
zip
(
data
[
"
hRIXS_det
"
],
ret
):
c
=
centroid
(
c
=
self
.
centroid_one
(
image
.
values
[
self
.
X_RANGE
,
self
.
Y_RANGE
].
T
,
image
.
values
[
self
.
X_RANGE
,
self
.
Y_RANGE
])
threshold
=
self
.
THRESHOLD
,
std_threshold
=
self
.
STD_THRESHOLD
,
curvature
=
(
self
.
CURVE_A
,
self
.
CURVE_B
))
if
not
len
(
c
):
if
not
len
(
c
):
continue
continue
rc
=
np
.
array
(
c
)
rc
=
np
.
array
(
c
)
hy
,
hx
=
np
.
histogram
(
r
[:],
_
=
np
.
histogram
(
rc
[:,
0
],
bins
=
bins
,
rc
[:,
0
]
-
self
.
parabola
(
rc
[:,
1
]),
range
=
(
0
,
self
.
Y_RANGE
.
stop
-
self
.
Y_RANGE
.
start
))
bins
=
bins
,
range
=
(
0
,
self
.
Y_RANGE
.
stop
-
self
.
Y_RANGE
.
start
))
r
[:]
=
hy
data
=
data
.
assign_coords
(
data
.
coords
[
"
energy
"
]
=
(
energy
=
np
.
linspace
(
self
.
Y_RANGE
.
start
,
self
.
Y_RANGE
.
stop
,
bins
)
np
.
linspace
(
self
.
Y_RANGE
.
start
,
self
.
Y_RANGE
.
stop
,
bins
)
*
self
.
ENERGY_SLOPE
+
self
.
ENERGY_INTERCEPT
)
*
self
.
ENERGY_SLOPE
+
self
.
ENERGY_INTERCEPT
)
return
data
.
assign
(
spectrum
=
((
"
trainId
"
,
"
energy
"
),
ret
))
data
[
'
spectrum
'
]
=
((
"
trainId
"
,
"
energy
"
),
ret
)
return
data
def
parabola
(
self
,
x
):
def
parabola
(
self
,
x
):
return
(
self
.
CURVE_B
*
x
+
self
.
CURVE_A
)
*
x
return
(
self
.
CURVE_B
*
x
+
self
.
CURVE_A
)
*
x
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment