Skip to content
Snippets Groups Projects

Fix for the BOZ analysis

Merged Loïc Le Guyader requested to merge boz-fix into master
1 file
+ 11
13
Compare changes
  • Side-by-side
  • Inline
@@ -1254,7 +1254,7 @@ def inspect_correction(params, gain=None):
scale = 1e-6
f, axs = plt.subplots(3, 3, figsize=(6, 6), sharex=True, sharey=True)
f, axs = plt.subplots(3, 3, figsize=(6, 6), sharex=True)
# nbins = np.linspace(0.01, 1.0, 100)
@@ -1276,16 +1276,11 @@ def inspect_correction(params, gain=None):
snr_v = snr(good_d[n].values.flatten(),
good_d[r].values.flatten(), verbose=True)
if k == 0:
m = np.nanmean(good_d[n].values.flatten()
/good_d[r].values.flatten())
else:
m = 1
m = snr_v['direct']['mu']
h, xedges, yedges, img = axs[l, k].hist2d(
g*scale*good_d[r].values.flatten(),
good_d[n].values.flatten()/good_d[r].values.flatten()/m,
[photon_scale, np.linspace(0.95, 1.05, 150)],
good_d[n].values.flatten()/good_d[r].values.flatten(),
[photon_scale, np.linspace(0.95, 1.05, 150)*m],
cmap='Blues',
vmax=200,
norm=LogNorm(),
@@ -1293,13 +1288,14 @@ def inspect_correction(params, gain=None):
)
h, xedges, yedges, img2 = axs[l, k].hist2d(
g*scale*sat_d[r].values.flatten(),
sat_d[n].values.flatten()/sat_d[r].values.flatten()/m,
[photon_scale, np.linspace(0.95, 1.05, 150)],
sat_d[n].values.flatten()/sat_d[r].values.flatten(),
[photon_scale, np.linspace(0.95, 1.05, 150)*m],
cmap='Reds',
vmax=200,
norm=LogNorm(),
# alpha=0.5 # make the plot looks ugly with lots of white lines
)
v = snr_v['direct']['mu']/snr_v['direct']['s']
axs[l, k].text(0.4, 0.15, f'SNR: {v:.0f}',
transform = axs[l, k].transAxes)
@@ -1310,9 +1306,11 @@ def inspect_correction(params, gain=None):
# axs[l, k].plot(3*nbins, 1+np.sqrt(2/(1e6*nbins)), c='C1', ls='--')
# axs[l, k].plot(3*nbins, 1-np.sqrt(2/(1e6*nbins)), c='C1', ls='--')
axs[l, k].set_ylim([0.95*m, 1.05*m])
for k in range(3):
for l in range(3):
axs[l, k].set_ylim([0.95, 1.05])
#for l in range(3):
# axs[l, k].set_ylim([0.95, 1.05])
if gain:
axs[2, k].set_xlabel('#ph (10$^6$)')
else:
Loading