Newer
Older
import pathlib
import jinja2
import numpy as np
import posixshmem
import pycuda.gpuarray
import shmem_utils
import utils
class PyCudaPipeline:
"""Class to handle instantiation and execution of CUDA kernels on trains
Objects of this class will also maintain their own circular buffers of
ndarrays in shared memory to allow zero-copy handover of corrected data.
"""
_src_dir = pathlib.Path(__file__).absolute().parent
with (_src_dir / "gpu-dssc-correct.cpp").open("r") as fd:
_kernel_template = jinja2.Template(fd.read())
def __init__(
self,
pixels_x,
pixels_y,
memory_cells,
pulse_filter,
output_buffer_size=20,
output_buffer_name=None,
input_data_dtype=np.uint16,
output_data_dtype=np.float32,
):
self.pixels_x = pixels_x
self.pixels_y = pixels_y
self.memory_cells = memory_cells
self.pulse_filter = pulse_filter
self.output_shape = (self.pixels_x, self.pixels_y, self.pulse_filter.size)
self.map_shape = (self.pixels_x, self.pixels_y, self.constant_memory_cells)
# preview will only be single memory cell
self.preview_shape = self.output_shape[:-1]
self.input_data_dtype = input_data_dtype
self.output_data_dtype = output_data_dtype
self.offset_map = pycuda.gpuarray.empty(self.map_shape, dtype=np.float32)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# reuse output arrays
self.gpu_result = pycuda.gpuarray.empty(
self.output_shape, dtype=output_data_dtype
)
self.gpu_frame_sums = pycuda.gpuarray.empty(
self.pulse_filter.size, dtype=np.float32
)
self.gpu_preview_raw = pycuda.gpuarray.empty(
self.preview_shape, dtype=np.float32
)
self.gpu_preview_corrected = pycuda.gpuarray.empty(
self.preview_shape, dtype=np.float32
)
self.preview_raw = np.empty(self.preview_shape, dtype=np.float32)
self.preview_corrected = np.empty(self.preview_shape, dtype=np.float32)
self.output_buffer_mem = posixshmem.SharedMemory(
name=output_buffer_name,
size=self.gpu_result.nbytes * output_buffer_size,
rw=True,
)
self.output_buffer_ary = self.output_buffer_mem.ndarray(
shape=(output_buffer_size,) + self.gpu_result.shape,
dtype=self.gpu_result.dtype,
)
self.output_buffer_handle_template = (
shmem_utils.handle_template_from_shmem_array(
self.output_buffer_mem, self.output_buffer_ary
)
)
self.output_buffer_next_index = 0
self.update_block_size(full_block=(1, 1, 64), preview_block=(1, 64, 1))
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def load_constants(self, offset_map_host):
constant_memory_cells = offset_map_host.shape[-1]
if constant_memory_cells != self.constant_memory_cells:
self.constant_memory_cells = constant_memory_cells
self.map_shape = (self.pixels_x, self.pixels_y, self.constant_memory_cells)
self.offset_map = pycuda.gpuarray.empty(self.map_shape, dtype=np.float32)
self._init_kernels()
self.offset_map.set(offset_map_host)
def _init_kernels(self):
kernel_source = self._kernel_template.render(
{
"pixels_x": self.pixels_x,
"pixels_y": self.pixels_y,
"memory_cells": self.memory_cells,
"constant_memory_cells": self.constant_memory_cells,
"input_data_dtype": utils.numpy_dtype_to_c_type_str[
self.input_data_dtype
],
"output_data_dtype": utils.numpy_dtype_to_c_type_str[
self.output_data_dtype
],
"pulse_filter": self.pulse_filter,
}
)
self.source_module = pycuda.compiler.SourceModule(
kernel_source, no_extern_c=True
)
self.reshaping_kernel = self.source_module.get_function("reshape_4_3")
self.correction_kernel = self.source_module.get_function("correct")
self.casting_kernel = self.source_module.get_function("only_cast")
self.preview_slice_raw_kernel = self.source_module.get_function(
"cell_slice_preview_raw"
)
self.preview_slice_corrected_kernel = self.source_module.get_function(
"cell_slice_preview_corrected"
)
self.preview_stat_raw_kernel = self.source_module.get_function(
"cell_stat_preview_raw"
)
self.preview_stat_corrected_kernel = self.source_module.get_function(
"cell_stat_preview_corrected"
)
self.frame_sum_kernel = self.source_module.get_function("sum_frames")
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def update_block_size(self, full_block=None, preview_block=None):
"""Execution is scheduled with 3d "blocks" of CUDA threads, tuning can
affect performance
Grid size is automatically computed based on block size. Note that
individual kernels must themselves check whether they go out of bounds;
grid dimensions get rounded up in case ndarray size is not multiple of
block size.
"""
if full_block is not None:
assert len(full_block) == 3
self.full_block = tuple(full_block)
self.full_grid = tuple(
utils.ceil_div(a_length, block_length)
for (a_length, block_length) in zip(self.output_shape, full_block)
)
if preview_block is not None:
self.preview_block = tuple(preview_block)
self.preview_grid = (
utils.ceil_div(self.output_shape[0], preview_block[0]),
utils.ceil_div(self.output_shape[1], preview_block[1]),
1,
)
# TODO: make configurable
self.cell_reduction_block = (1, 1, 32)
self.cell_reduction_grid = (
1,
1,
utils.ceil_div(self.output_shape[-1], self.cell_reduction_block[-1]),
)
def reshape(self, input_data, output_data):
"""Do the reshaping and pulse filtering that the splitter would have done
equivalent to:
output_data[:] = np.moveaxis(
np.squeeze(input_data), (0, 1, 2), (2, 1, 0)
)[..., pulse_filter]
"""
# TODO: Move to somewhere else
self.reshaping_kernel(
input_data, output_data, block=self.full_block, grid=self.full_grid
)
def correct(self, data, cell_table):
"""Apply corrections to data
Applies corrections to input data and casts to desired output dtype.
Parameter cell_table allows out of order or non-contiguous memory cells
in input data. Both input ndarrays are assumed to be on GPU already,
preferably wrapped in GPU arrays (pycuda.gpuarray).
Will return string encoded handle to shared memory output buffer and
(view of) said buffer as an ndarray. Keep in mind that the output
buffers will get overwritten eventually (circular buffer).
"""
self.correction_kernel(
data,
cell_table,
self.offset_map,
self.gpu_result,
block=self.full_block,
grid=self.full_grid,
)
buffer_index = self.output_buffer_next_index
output_buffer = self.output_buffer_ary[buffer_index]
handle = self.output_buffer_handle_template.format(index=buffer_index)
self.gpu_result.get(ary=output_buffer)
self.output_buffer_next_index = (
self.output_buffer_next_index + 1
) % self.output_buffer_ary.shape[0]
return handle, output_buffer
def only_cast(self, data):
"""Like correct without the correction
This currently means just casting to output dtype.
"""
self.casting_kernel(
data,
self.gpu_result,
block=self.full_block,
grid=self.full_grid,
)
buffer_index = self.output_buffer_next_index
output_buffer = self.output_buffer_ary[buffer_index]
handle = self.output_buffer_handle_template.format(index=buffer_index)
self.gpu_result.get(ary=output_buffer)
self.output_buffer_next_index = (
self.output_buffer_next_index + 1
) % self.output_buffer_ary.shape[0]
return handle, output_buffer
def compute_preview(
self,
raw_data,
preview_index,
reuse_corrected=True,
cell_table=None,
):
"""Generate single slice or reduction preview of raw and corrected data
Special values of preview_index are -1 for max, -2 for mean, -3 for
sum, and -4 for stdev (across cells).
Note that preview_index is taken from data without checking cell table.
Caller has to figure out which index along memory cell dimension they
actually want to preview.
raw_data should be a gpuarray
Assumes that correction has just happened - meaning self.gpu_result
contains corrected data (corrected from raw_data).
"""
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
if preview_index < -4:
raise ValueError(f"No statistic with code {preview_index} defined")
elif preview_index >= self.memory_cells:
raise ValueError(f"Memory cell index {preview_index} out of range")
if not reuse_corrected:
# if we didn't already correct, need to do so to get corrected data in buffer
if self.offset_map.size == 0 or cell_table is None:
self.casting_kernel(
raw_data,
self.gpu_result,
block=self.full_block,
grid=self.full_grid,
)
if self.offset_map.size == 0:
print(
"Warning: no offset map loaded, corrected preview "
"will be not actually have correction applied."
)
if cell_table is None:
print(
"Warning: missing parameter cell_table for applying "
"correction for preview."
)
else:
self.correction_kernel(
raw_data,
cell_table,
self.offset_map,
self.gpu_result,
block=self.full_block,
grid=self.full_grid,
)
# TODO: enum around reduction type
self.preview_slice_raw_kernel(
raw_data,
self.gpu_preview_raw,
block=self.preview_block,
grid=self.preview_grid,
)
self.preview_slice_corrected_kernel(
self.gpu_result,
self.gpu_preview_corrected,
block=self.preview_block,
grid=self.preview_grid,
)
# TODO: select argmax independently for raw and corrected?
# TODO: send frame sums somewhere to compute global max frame
self.frame_sum_kernel(
self.gpu_result,
self.gpu_frame_sums,
block=self.cell_reduction_block,
grid=self.cell_reduction_grid,
)
max_index = np.argmax(self.gpu_frame_sums.get())
self.preview_slice_raw_kernel(
raw_data,
np.int16(max_index),
self.gpu_preview_raw,
block=self.preview_block,
grid=self.preview_grid,
)
self.preview_slice_corrected_kernel(
self.gpu_result,
np.int16(max_index),
self.gpu_preview_corrected,
block=self.preview_block,
grid=self.preview_grid,
)
elif preview_index in (-2, -3, -4):
self.preview_stat_raw_kernel(
raw_data, # this is input_data_dtype
self.gpu_preview_raw,
block=self.preview_block,
grid=self.preview_grid,
)
self.preview_stat_corrected_kernel(
self.gpu_result, # this is output_data_dtype
self.gpu_preview_corrected,
block=self.preview_block,
grid=self.preview_grid,
)
self.gpu_preview_raw.get(ary=self.preview_raw)
self.gpu_preview_corrected.get(ary=self.preview_corrected)
return self.preview_raw, self.preview_corrected