Skip to content
Snippets Groups Projects
Commit 876fbbe8 authored by David Hammer's avatar David Hammer
Browse files

GH/JF: Decrease default shmem buffer size

parent 87feec34
No related branches found
No related tags found
1 merge request!12Snapshot: field test deployed version as of end of run 202201
......@@ -184,6 +184,11 @@ class Gotthard2CalcatFriend(base_calcat.BaseCalcatFriend):
.key(f"{param_prefix}.memoryCells")
.setNewDefaultValue(2)
.commit(),
OVERWRITE_ELEMENT(expected)
.key("outputShmemBufferSize")
.setNewDefaultValue(2)
.commit(),
)
base_calcat.add_status_schema_from_enum(
......
......@@ -172,6 +172,12 @@ class JungfrauCalcatFriend(base_calcat.BaseCalcatFriend):
.key(f"{param_prefix}.biasVoltage")
.setNewDefaultValue(90)
.commit(),
# JUNGFRAU data is small, can fit plenty of trains in here
OVERWRITE_ELEMENT(expected)
.key("outputShmemBufferSize")
.setNewDefaultValue(2)
.commit(),
)
# add extra parameters
......
......@@ -7,32 +7,7 @@ import numpy as np
from . import utils
class BaseGpuRunner:
"""Class to handle GPU buffers and execution of CUDA kernels on image data
All GPU buffers are kept within this class and it is intentionally very stateful.
This generally means that you will want to load data into it and then do something.
Typical usage in correct order:
1. instantiate
2. load constants
3. load_data
4. load_cell_table
5. correct
6a. reshape (only here does data transfer back to host)
6b. compute_preview (optional)
repeat from 2. or 3.
In case no constants are available / correction is not desired, can skip 3 and 4 and
pass CorrectionFlags.NONE to correct(...). Generally, user must handle which
correction steps are appropriate given the constants loaded so far.
"""
# These must be set by subclass
_kernel_source_filename = None
_corrected_axis_order = None
class BaseKernelRunner:
def __init__(
self,
pixels_x,
......@@ -42,11 +17,6 @@ class BaseGpuRunner:
input_data_dtype=np.uint16,
output_data_dtype=np.float32,
):
_src_dir = pathlib.Path(__file__).absolute().parent
# subclass must define _kernel_source_filename
with (_src_dir / "kernels" / self._kernel_source_filename).open("r") as fd:
self._kernel_template = jinja2.Template(fd.read())
self.pixels_x = pixels_x
self.pixels_y = pixels_y
self.memory_cells = memory_cells
......@@ -60,41 +30,20 @@ class BaseGpuRunner:
self.input_data_dtype = input_data_dtype
self.output_data_dtype = output_data_dtype
self._init_kernels()
# reuse buffers for input / output
self.cell_table_gpu = cupy.empty(self.memory_cells, dtype=np.uint16)
self.input_data_gpu = cupy.empty(self.input_shape, dtype=input_data_dtype)
self.processed_data_gpu = cupy.empty(
self.processed_shape, dtype=output_data_dtype
)
self.reshaped_data_gpu = None # currently not reusing buffer
# default preview layers: raw and corrected (subclass can extend)
self.preview_buffer_getters = [
self._get_raw_for_preview,
self._get_corrected_for_preview,
]
# to get data from respective buffers to cell, x, y shape for preview computation
def _get_raw_for_preview(self):
"""Should return view of self.input_data_gpu with shape (cell, x/y, x/y)"""
raise NotImplementedError()
def _get_corrected_for_preview(self):
"""Should return view of self.processed_data_gpu with shape (cell, x/y, x/y)"""
raise NotImplementedError()
def flush_buffers(self):
"""Optional reset GPU buffers (implement in subclasses which need this)"""
pass
def correct(self, flags):
"""Correct (already loaded) image data according to flags
Subclass must define this method. It should assume that image data, cell table,
and other data (including constants) has already been loaded. It should
probably run some GPU kernel and output should go into self.processed_data_gpu.
Detector-specific subclass must define this method. It should assume that image
data, cell table, and other data (including constants) has already been loaded.
It should probably run some GPU kernel and output should go into
self.processed_data_gpu.
Keep in mind that user only gets output from compute_preview or reshape
(either of these should come after correct).
......@@ -107,29 +56,18 @@ class BaseGpuRunner:
"""
raise NotImplementedError()
def reshape(self, output_order, out=None):
"""Move axes to desired output order and copy to host memory
The out parameter is passed directly to the get function of GPU array: if
None, then a new ndarray (in host memory) is returned. If not None, then data
will be loaded into the provided array, which must match shape / dtype.
"""
# TODO: avoid copy
if output_order == self._corrected_axis_order:
self.reshaped_data_gpu = self.processed_data_gpu
else:
self.reshaped_data_gpu = cupy.transpose(
self.processed_data_gpu,
utils.transpose_order(self._corrected_axis_order, output_order),
)
return self.reshaped_data_gpu.get(out=out)
# to get data from respective buffers to cell, x, y shape for preview computation
def _get_raw_for_preview(self):
"""Should return view of self.input_data_gpu with shape (cell, x/y, x/y)"""
raise NotImplementedError()
def load_data(self, raw_data):
self.input_data_gpu.set(raw_data)
def _get_corrected_for_preview(self):
"""Should return view of self.processed_data_gpu with shape (cell, x/y, x/y)"""
raise NotImplementedError()
def load_cell_table(self, cell_table):
self.cell_table_gpu.set(cell_table)
def flush_buffers(self):
"""Optional reset GPU buffers (implement in subclasses which need this)"""
pass
def compute_previews(self, preview_index):
"""Generate single slice or reduction preview of raw and corrected data
......@@ -174,6 +112,89 @@ class BaseGpuRunner:
}[preview_index]
return stat_fun(image_data, axis=0, dtype=cupy.float32).get()
class BaseGpuRunner(base_kernel_runner):
"""Class to handle GPU buffers and execution of CUDA kernels on image data
All GPU buffers are kept within this class and it is intentionally very stateful.
This generally means that you will want to load data into it and then do something.
Typical usage in correct order:
1. instantiate
2. load constants
3. load_data
4. load_cell_table
5. correct
6a. reshape (only here does data transfer back to host)
6b. compute_preview (optional)
repeat from 2. or 3.
In case no constants are available / correction is not desired, can skip 3 and 4 and
pass CorrectionFlags.NONE to correct(...). Generally, user must handle which
correction steps are appropriate given the constants loaded so far.
"""
# These must be set by subclass
_kernel_source_filename = None
_corrected_axis_order = None
def __init__(
self,
pixels_x,
pixels_y,
memory_cells,
constant_memory_cells,
input_data_dtype=np.uint16,
output_data_dtype=np.float32,
):
super().__init__(
pixels_x,
pixels_y,
memory_cells,
constant_memory_cells,
input_data_dtype,
output_data_dtype,
)
_src_dir = pathlib.Path(__file__).absolute().parent
# subclass must define _kernel_source_filename
with (_src_dir / "kernels" / self._kernel_source_filename).open("r") as fd:
self._kernel_template = jinja2.Template(fd.read())
self._init_kernels()
# reuse buffers for input / output
self.cell_table_gpu = cupy.empty(self.memory_cells, dtype=np.uint16)
self.input_data_gpu = cupy.empty(self.input_shape, dtype=input_data_dtype)
self.processed_data_gpu = cupy.empty(
self.processed_shape, dtype=output_data_dtype
)
self.reshaped_data_gpu = None # currently not reusing buffer
def reshape(self, output_order, out=None):
"""Move axes to desired output order and copy to host memory
The out parameter is passed directly to the get function of GPU array: if
None, then a new ndarray (in host memory) is returned. If not None, then data
will be loaded into the provided array, which must match shape / dtype.
"""
# TODO: avoid copy
if output_order == self._corrected_axis_order:
self.reshaped_data_gpu = self.processed_data_gpu
else:
self.reshaped_data_gpu = cupy.transpose(
self.processed_data_gpu,
utils.transpose_order(self._corrected_axis_order, output_order),
)
return self.reshaped_data_gpu.get(out=out)
def load_data(self, raw_data):
self.input_data_gpu.set(raw_data)
def load_cell_table(self, cell_table):
self.cell_table_gpu.set(cell_table)
def update_block_size(self, full_block):
"""Set execution grid such that it covers processed_shape with full_blocks
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment