# LPD Offset, Noise and Dead Pixels Characterization #
# LPD Offset, Noise and Dead Pixels Characterization #
Author: M. Karnevskiy, S. Hauf
Author: M. Karnevskiy, S. Hauf
This notebook performs re-characterize of dark images to derive offset, noise and bad-pixel maps. All three types of constants are evaluated per-pixel and per-memory cell.
This notebook performs re-characterize of dark images to derive offset, noise and bad-pixel maps. All three types of constants are evaluated per-pixel and per-memory cell.
The notebook will correctly handle veto settings, but note that if you veto cells you will not be able to use these offsets for runs with different veto settings - vetoed cells will have zero offset.
The notebook will correctly handle veto settings, but note that if you veto cells you will not be able to use these offsets for runs with different veto settings - vetoed cells will have zero offset.
The evaluated calibration constants are stored locally and injected in the calibration data base.
The evaluated calibration constants are stored locally and injected in the calibration data base.
%% Cell type:code id: tags:
%% Cell type:code id: tags:
``` python
``` python
in_folder="/gpfs/exfel/exp/FXE/202304/p003338/raw"# path to input data, required
in_folder="/gpfs/exfel/exp/FXE/202304/p003338/raw"# path to input data, required
out_folder="/gpfs/exfel/data/scratch/kluyvert/lpd-darks-p3338-r133-134-135/"# path to output to, required
out_folder="/gpfs/exfel/data/scratch/kluyvert/lpd-darks-p3338-r133-134-135/"# path to output to, required
metadata_folder=""# Directory containing calibration_metadata.yml when run by xfel-calibrate
metadata_folder=""# Directory containing calibration_metadata.yml when run by xfel-calibrate
modules=[-1]# list of modules to evaluate, RANGE ALLOWED
modules=[-1]# list of modules to evaluate, RANGE ALLOWED
run_high=133# run number in which high gain data was recorded, required
run_high=133# run number in which high gain data was recorded, required
run_med=134# run number in which medium gain data was recorded, required
run_med=134# run number in which medium gain data was recorded, required
run_low=135# run number in which low gain data was recorded, required
run_low=135# run number in which low gain data was recorded, required
karabo_id="FXE_DET_LPD1M-1"# karabo karabo_id
karabo_id="FXE_DET_LPD1M-1"# karabo karabo_id
karabo_da=['-1']# a list of data aggregators names, Default [-1] for selecting all data aggregators
karabo_da=['-1']# a list of data aggregators names, Default [-1] for selecting all data aggregators
source_name="{}/DET/{}CH0:xtdf"# Source name for raw detector data - filled with karabo_id & module number
source_name="{}/DET/{}CH0:xtdf"# Source name for raw detector data - filled with karabo_id & module number
use_dir_creation_date=True# use the creation date of the directory for database time derivation
use_dir_creation_date=True# use the creation date of the directory for database time derivation
cal_db_interface="tcp://max-exfl016:8015#8025"# the database interface to use
cal_db_interface="tcp://max-exfl016:8015#8025"# the database interface to use
cal_db_timeout=300000# timeout on caldb requests"
cal_db_timeout=300000# timeout on caldb requests"
local_output=True# output constants locally
local_output=True# output constants locally
db_output=False# output constants to database
db_output=False# output constants to database
capacitor_setting=5# capacitor_setting for which data was taken
capacitor_setting=5# capacitor_setting for which data was taken
mem_cells=512# number of memory cells used
mem_cells=512# number of memory cells used
bias_voltage=250# detector bias voltage
bias_voltage=250# detector bias voltage
thresholds_offset_sigma=3.# bad pixel relative threshold in terms of n sigma offset
thresholds_offset_sigma=3.# bad pixel relative threshold in terms of n sigma offset
thresholds_offset_hard=[400,1500]# bad pixel hard threshold
thresholds_offset_hard=[400,1500]# bad pixel hard threshold
thresholds_noise_sigma=7.# bad pixel relative threshold in terms of n sigma noise
thresholds_noise_sigma=7.# bad pixel relative threshold in terms of n sigma noise
thresholds_noise_hard=[1,35]# bad pixel hard threshold
thresholds_noise_hard=[1,35]# bad pixel hard threshold
ntrains=500# maximum number of trains to use in each gain stage
ntrains=500# maximum number of trains to use in each gain stage
skip_first_ntrains=10# Number of first trains to skip
skip_first_ntrains=10# Number of first trains to skip
min_trains=370# minimum number of trains needed for each gain stage
min_trains=370# minimum number of trains needed for each gain stage
# Parameters for plotting
# Parameters for plotting
skip_plots=False# exit after writing corrected files
skip_plots=False# exit after writing corrected files
high_res_badpix_3d=False# plot bad-pixel summary in high resolution
high_res_badpix_3d=False# plot bad-pixel summary in high resolution
test_for_normality=False# permorm normality test
test_for_normality=False# permorm normality test
inject_cell_order=False# Include memory cell order as part of the detector condition
inject_cell_order=False# Include memory cell order as part of the detector condition
Distribution of a pedestal (ADUs) over trains for the pixel (12,12), memory cell 12. A median of the distribution is shown in yellow. A standard deviation is shown in red. The green line shows average over all pixels for a given memory cell and gain stage.
Distribution of a pedestal (ADUs) over trains for the pixel (12,12), memory cell 12. A median of the distribution is shown in yellow. A standard deviation is shown in red. The green line shows average over all pixels for a given memory cell and gain stage.
Distributions of raw pedestal values have been tested if they are normally distributed. A normality test have been performed for each pixel and each memory cell. Plots below show histogram of p-Values and a 2D distribution for the memory cell 12.
Distributions of raw pedestal values have been tested if they are normally distributed. A normality test have been performed for each pixel and each memory cell. Plots below show histogram of p-Values and a 2D distribution for the memory cell 12.
%% Cell type:code id: tags:
%% Cell type:code id: tags:
``` python
``` python
# Loop over modules, constants
# Loop over modules, constants
ifnottest_for_normality:
ifnottest_for_normality:
print('Normality test was not requested. Flag `test_for_normality` False')
print('Normality test was not requested. Flag `test_for_normality` False')
Single cell overviews allow to identify potential effects on all memory cells, e.g. on a sensor level. Additionally, they should serve as a first sanity check on expected behaviour, e.g. if structuring on the ASIC level is visible in the offsets, but otherwise no immediate artifacts are visible.
Single cell overviews allow to identify potential effects on all memory cells, e.g. on a sensor level. Additionally, they should serve as a first sanity check on expected behaviour, e.g. if structuring on the ASIC level is visible in the offsets, but otherwise no immediate artifacts are visible.
Plots give an overview of calibration constants averaged across tiles. A bad pixel mask is applied. Constants are compared with pre-existing constants retrieved from the calibration database. Differences $\Delta$ between the old and new constants is shown.
Plots give an overview of calibration constants averaged across tiles. A bad pixel mask is applied. Constants are compared with pre-existing constants retrieved from the calibration database. Differences $\Delta$ between the old and new constants is shown.
%% Cell type:code id: tags:
%% Cell type:code id: tags:
``` python
``` python
time_summary=[]
time_summary=[]
time_summary.append(f"The following pre-existing constants are used for comparison:")
time_summary.append(f"The following pre-existing constants are used for comparison:")
forqm,qm_datainold_mdata.items():
forqm,qm_datainold_mdata.items():
time_summary.append(f"- Module {qm}")
time_summary.append(f"- Module {qm}")
forconst,const_datainqm_data.items():
forconst,const_datainqm_data.items():
time_summary.append(f" - {const} created at {const_data['timestamp']}")
time_summary.append(f" - {const} created at {const_data['timestamp']}")
display(Markdown("\n".join(time_summary)))
display(Markdown("\n".join(time_summary)))
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
``` python
``` python
# Loop over modules, constants
# Loop over modules, constants
forqminres:
forqminres:
forgaininrange(3):
forgaininrange(3):
display(Markdown('### Summary across tiles - {} gain'.format(gain_names[gain])))
display(Markdown('### Summary across tiles - {} gain'.format(gain_names[gain])))
## Variation of offset and noise across Tiles and ASICs ##
## Variation of offset and noise across Tiles and ASICs ##
The following plots show a standard deviation $\sigma$ of the calibration constant. The plot of standard deviations across tiles show pixels of one tile ($128 \times 32$). Value for each pixel shows a standard deviation across 16 tiles. The standard deviation across ASICs are shown overall tiles. The plot shows pixels of one ASIC ($16 \times 32$), where the value shows a standard deviation across all ACIS of the module.
The following plots show a standard deviation $\sigma$ of the calibration constant. The plot of standard deviations across tiles show pixels of one tile ($128 \times 32$). Value for each pixel shows a standard deviation across 16 tiles. The standard deviation across ASICs are shown overall tiles. The plot shows pixels of one ASIC ($16 \times 32$), where the value shows a standard deviation across all ACIS of the module.
%% Cell type:code id: tags:
%% Cell type:code id: tags:
``` python
``` python
# Loop over modules, constants
# Loop over modules, constants
forqminres:
forqminres:
forgaininrange(3):
forgaininrange(3):
display(Markdown('### Variation of offset and noise across ASICs - {} gain'.format(gain_names[gain])))
display(Markdown('### Variation of offset and noise across ASICs - {} gain'.format(gain_names[gain])))
fig=plt.figure(figsize=(15,6))
fig=plt.figure(figsize=(15,6))
foriconst,constinenumerate(['Offset','Noise']):
foriconst,constinenumerate(['Offset','Noise']):
data=np.copy(res[qm][const][:,:,:,gain])
data=np.copy(res[qm][const][:,:,:,gain])
data[badpix_g[qm][:,:,:,gain]>0]=np.nan
data[badpix_g[qm][:,:,:,gain]>0]=np.nan
label='$\sigma$ {} [ADU]'.format(const)
label='$\sigma$ {} [ADU]'.format(const)
dataA=np.nanmean(data,axis=2)# average over cells
dataA=np.nanmean(data,axis=2)# average over cells
dataA=dataA.reshape(8,32,16,16)
dataA=dataA.reshape(8,32,16,16)
dataA=np.nanstd(dataA,axis=(0,2))# average across ASICs
dataA=np.nanstd(dataA,axis=(0,2))# average across ASICs
ax=fig.add_subplot(121+iconst)
ax=fig.add_subplot(121+iconst)
_=heatmapPlot(dataA,add_panels=True,
_=heatmapPlot(dataA,add_panels=True,
y_label='rows',x_label='columns',
y_label='rows',x_label='columns',
lut_label=label,use_axis=ax,
lut_label=label,use_axis=ax,
panel_y_label=label,panel_x_label=label,
panel_y_label=label,panel_x_label=label,
cmap='viridis'
cmap='viridis'
)
)
plt.show()
plt.show()
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
``` python
``` python
# Loop over modules, constants
# Loop over modules, constants
forqminres:
forqminres:
forgaininrange(3):
forgaininrange(3):
display(Markdown('### Variation of offset and noise across tiles - {} gain'.format(gain_names[gain])))
display(Markdown('### Variation of offset and noise across tiles - {} gain'.format(gain_names[gain])))
fig=plt.figure(figsize=(15,6))
fig=plt.figure(figsize=(15,6))
foriconst,constinenumerate(['Offset','Noise']):
foriconst,constinenumerate(['Offset','Noise']):
data=np.copy(res[qm][const][:,:,:,gain])
data=np.copy(res[qm][const][:,:,:,gain])
data[badpix_g[qm][:,:,:,gain]>0]=np.nan
data[badpix_g[qm][:,:,:,gain]>0]=np.nan
label='$\sigma$ {} [ADU]'.format(const)
label='$\sigma$ {} [ADU]'.format(const)
dataT=data.reshape(
dataT=data.reshape(
int(data.shape[0]/32),
int(data.shape[0]/32),
32,
32,
int(data.shape[1]/128),
int(data.shape[1]/128),
128,
128,
data.shape[2])
data.shape[2])
dataT=np.nanstd(dataT,axis=(0,2))
dataT=np.nanstd(dataT,axis=(0,2))
dataT=np.nanmean(dataT,axis=2)
dataT=np.nanmean(dataT,axis=2)
ax=fig.add_subplot(121+iconst)
ax=fig.add_subplot(121+iconst)
_=heatmapPlot(dataT,add_panels=True,
_=heatmapPlot(dataT,add_panels=True,
y_label='rows',x_label='columns',
y_label='rows',x_label='columns',
lut_label=label,use_axis=ax,
lut_label=label,use_axis=ax,
panel_y_label=label,panel_x_label=label,
panel_y_label=label,panel_x_label=label,
cmap='viridis')
cmap='viridis')
plt.show()
plt.show()
```
```
%% Cell type:raw id: tags:
%% Cell type:raw id: tags:
.. raw:: latex
.. raw:: latex
\newpage
\newpage
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
## Aggregate values and per cell behaviour ##
## Aggregate values and per cell behaviour ##
The following tables and plots give an overview of statistical aggregates for each constant, as well as per-cell behavior, averaged across pixels.
The following tables and plots give an overview of statistical aggregates for each constant, as well as per-cell behavior, averaged across pixels.
%% Cell type:code id: tags:
%% Cell type:code id: tags:
``` python
``` python
# Loop over modules, constants
# Loop over modules, constants
forqminres:
forqminres:
forgaininrange(3):
forgaininrange(3):
display(Markdown('### Mean over pixels - {} gain'.format(gain_names[gain])))
display(Markdown('### Mean over pixels - {} gain'.format(gain_names[gain])))
The following tables show summary information for the evaluated module. Values for currently evaluated constants are compared with values for pre-existing constants retrieved from the calibration database.
The following tables show summary information for the evaluated module. Values for currently evaluated constants are compared with values for pre-existing constants retrieved from the calibration database.