Skip to content
Snippets Groups Projects
Commit 4a94f782 authored by Karim Ahmed's avatar Karim Ahmed
Browse files

Merge branch 'fix/jungfrau_long_dark_run' into 'master'

[Jungfrau][Dark] Set max trains to process dark constants from

See merge request !799
parents 43af30c3 67694497
No related branches found
No related tags found
1 merge request!799[Jungfrau][Dark] Set max trains to process dark constants from
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Jungfrau Dark Image Characterization # # Jungfrau Dark Image Characterization #
Author: European XFEL Detector Group, Version: 2.0 Author: European XFEL Detector Group, Version: 2.0
Analyzes Jungfrau dark image data to deduce offset, noise and resulting bad pixel maps Analyzes Jungfrau dark image data to deduce offset, noise and resulting bad pixel maps
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
in_folder = '/gpfs/exfel/exp/SPB/202130/p900204/raw/' # folder under which runs are located, required in_folder = '/gpfs/exfel/exp/SPB/202130/p900204/raw/' # folder under which runs are located, required
out_folder = '/gpfs/exfel/data/scratch/ahmedk/test/remove' # path to place reports at, required out_folder = '/gpfs/exfel/data/scratch/ahmedk/test/remove' # path to place reports at, required
metadata_folder = '' # Directory containing calibration_metadata.yml when run by xfel-calibrate metadata_folder = '' # Directory containing calibration_metadata.yml when run by xfel-calibrate
run_high = 141 # run number for G0 dark run, required run_high = 141 # run number for G0 dark run, required
run_med = 142 # run number for G1 dark run, required run_med = 142 # run number for G1 dark run, required
run_low = 143 # run number for G2 dark run, required run_low = 143 # run number for G2 dark run, required
# Parameters used to access raw data. # Parameters used to access raw data.
karabo_da = ['JNGFR01', 'JNGFR02','JNGFR03','JNGFR04', 'JNGFR05', 'JNGFR06','JNGFR07','JNGFR08'] # list of data aggregators, which corresponds to different JF modules karabo_da = ['JNGFR01', 'JNGFR02','JNGFR03','JNGFR04', 'JNGFR05', 'JNGFR06','JNGFR07','JNGFR08'] # list of data aggregators, which corresponds to different JF modules
karabo_id = 'SPB_IRDA_JF4M' # karabo_id (detector identifier) prefix of Jungfrau detector to process. karabo_id = 'SPB_IRDA_JF4M' # karabo_id (detector identifier) prefix of Jungfrau detector to process.
karabo_id_control = '' # if control is on a different ID, set to empty string if it is the same a karabo-id karabo_id_control = '' # if control is on a different ID, set to empty string if it is the same a karabo-id
receiver_template = 'JNGFR{:02}' # inset for receiver devices receiver_template = 'JNGFR{:02}' # inset for receiver devices
instrument_source_template = '{}/DET/{}:daqOutput' # template for instrument source name (filled with karabo_id & receiver_id). e.g. 'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput' instrument_source_template = '{}/DET/{}:daqOutput' # template for instrument source name (filled with karabo_id & receiver_id). e.g. 'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput'
ctrl_source_template = '{}/DET/CONTROL' # template for control source name (filled with karabo_id_control) ctrl_source_template = '{}/DET/CONTROL' # template for control source name (filled with karabo_id_control)
# Parameters for calibration database and storing constants. # Parameters for calibration database and storing constants.
use_dir_creation_date = True # use dir creation date use_dir_creation_date = True # use dir creation date
cal_db_interface = 'tcp://max-exfl016:8016#8045' # calibrate db interface to connect to cal_db_interface = 'tcp://max-exfl016:8016#8045' # calibrate db interface to connect to
cal_db_timeout = 300000 # timeout on caldb requests cal_db_timeout = 300000 # timeout on caldb requests
local_output = True # output constants locally local_output = True # output constants locally
db_output = False # output constants to database db_output = False # output constants to database
# Parameters affecting creating dark calibration constants. # Parameters affecting creating dark calibration constants.
badpixel_threshold_sigma = 5. # bad pixels defined by values outside n times this std from median badpixel_threshold_sigma = 5. # bad pixels defined by values outside n times this std from median
offset_abs_threshold_low = [1000, 10000, 10000] # absolute bad pixel threshold in terms of offset, lower values offset_abs_threshold_low = [1000, 10000, 10000] # absolute bad pixel threshold in terms of offset, lower values
offset_abs_threshold_high = [8000, 15000, 15000] # absolute bad pixel threshold in terms of offset, upper values offset_abs_threshold_high = [8000, 15000, 15000] # absolute bad pixel threshold in terms of offset, upper values
max_trains = 0 # Maximum trains to process darks. Set to 0 to process all available train images. max_trains = 1000 # Maximum trains to process darks. Set to 0 to process all available train images. 1000 trains is enough resolution to create the dark constants
min_trains = 1 # Minimum number of trains that should be available to process dark constants. Default 1. min_trains = 100 # Minimum number of trains to process dark constants. Raise a warning if the run has fewer trains.
manual_slow_data = False # if true, use manually entered bias_voltage and integration_time values manual_slow_data = False # if true, use manually entered bias_voltage and integration_time values
time_limits = 0.025 # to find calibration constants later on, the integration time is allowed to vary by 0.5 us time_limits = 0.025 # to find calibration constants later on, the integration time is allowed to vary by 0.5 us
# Parameters to be used for injecting dark calibration constants. # Parameters to be used for injecting dark calibration constants.
integration_time = 1000 # integration time in us, will be overwritten by value in file integration_time = 1000 # integration time in us, will be overwritten by value in file
gain_setting = 0 # 0 for dynamic, forceswitchg1, forceswitchg2, 1 for dynamichg0, fixgain1, fixgain2. Will be overwritten by value in file gain_setting = 0 # 0 for dynamic, forceswitchg1, forceswitchg2, 1 for dynamichg0, fixgain1, fixgain2. Will be overwritten by value in file
gain_mode = 0 # 1 if medium and low runs are fixgain1 and fixgain2, otherwise 0. It will be overwritten by value in file, if manual_slow_data gain_mode = 0 # 1 if medium and low runs are fixgain1 and fixgain2, otherwise 0. It will be overwritten by value in file, if manual_slow_data
bias_voltage = 90 # sensor bias voltage in V, will be overwritten by value in file bias_voltage = 90 # sensor bias voltage in V, will be overwritten by value in file
memory_cells = 16 # number of memory cells memory_cells = 16 # number of memory cells
# Parameters used for plotting # Parameters used for plotting
detailed_report = False detailed_report = False
# TODO: this is used for only Warning check at AGIPD dark. # TODO: this is used for only Warning check at AGIPD dark.
# Need to rethink if it makes sense to use it here as well. # Need to rethink if it makes sense to use it here as well.
operation_mode = 'ADAPTIVE_GAIN' # Detector operation mode, optional operation_mode = 'ADAPTIVE_GAIN' # Detector operation mode, optional
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
import glob
import os import os
import warnings import warnings
from pathlib import Path from logging import warning
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
import matplotlib import matplotlib
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import multiprocessing import multiprocessing
import numpy as np import numpy as np
import pasha as psh import pasha as psh
import yaml import yaml
from IPython.display import Markdown, display from IPython.display import Markdown, display
from extra_data import RunDirectory from extra_data import RunDirectory
matplotlib.use('agg') matplotlib.use('agg')
%matplotlib inline %matplotlib inline
from XFELDetAna.plotting.heatmap import heatmapPlot from XFELDetAna.plotting.heatmap import heatmapPlot
from XFELDetAna.plotting.histogram import histPlot from XFELDetAna.plotting.histogram import histPlot
from cal_tools import jungfraulib, step_timing from cal_tools import jungfraulib, step_timing
from cal_tools.ana_tools import save_dict_to_hdf5
from cal_tools.enums import BadPixels, JungfrauGainMode from cal_tools.enums import BadPixels, JungfrauGainMode
from cal_tools.tools import ( from cal_tools.tools import (
get_dir_creation_date, get_dir_creation_date,
get_pdu_from_db, get_pdu_from_db,
get_random_db_interface, get_random_db_interface,
get_report, get_report,
save_const_to_h5, save_const_to_h5,
send_to_db, send_to_db,
) )
from iCalibrationDB import Conditions, Constants from iCalibrationDB import Conditions, Constants
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Constants relevant for the analysis # Constants relevant for the analysis
run_nums = [run_high, run_med, run_low] # run number for G0/HG0, G1, G2 run_nums = [run_high, run_med, run_low] # run number for G0/HG0, G1, G2
sensor_size = (1024, 512) sensor_size = (1024, 512)
gains = [0, 1, 2] gains = [0, 1, 2]
fixed_settings = [ fixed_settings = [
JungfrauGainMode.FIX_GAIN_1.value, JungfrauGainMode.FIX_GAIN_2.value] JungfrauGainMode.FIX_GAIN_1.value, JungfrauGainMode.FIX_GAIN_2.value]
dynamic_settings = [ dynamic_settings = [
JungfrauGainMode.FORCE_SWITCH_HG1.value, JungfrauGainMode.FORCE_SWITCH_HG2.value] JungfrauGainMode.FORCE_SWITCH_HG1.value, JungfrauGainMode.FORCE_SWITCH_HG2.value]
old_fixed_settings = ["fixgain1", "fixgain2"] old_fixed_settings = ["fixgain1", "fixgain2"]
creation_time = None creation_time = None
if use_dir_creation_date: if use_dir_creation_date:
creation_time = get_dir_creation_date(in_folder, run_high) creation_time = get_dir_creation_date(in_folder, run_high)
print(f"Using {creation_time} as creation time") print(f"Using {creation_time} as creation time")
os.makedirs(out_folder, exist_ok=True) os.makedirs(out_folder, exist_ok=True)
cal_db_interface = get_random_db_interface(cal_db_interface) cal_db_interface = get_random_db_interface(cal_db_interface)
print(f'Calibration database interface: {cal_db_interface}') print(f'Calibration database interface: {cal_db_interface}')
if karabo_id_control == "": if karabo_id_control == "":
karabo_id_control = karabo_id karabo_id_control = karabo_id
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
proposal = list(filter(None, in_folder.strip('/').split('/')))[-2] proposal = list(filter(None, in_folder.strip('/').split('/')))[-2]
file_loc = f"proposal:{proposal} runs:{run_high} {run_med} {run_low}" file_loc = f"proposal:{proposal} runs:{run_high} {run_med} {run_low}"
report = get_report(metadata_folder) report = get_report(metadata_folder)
step_timer = step_timing.StepTimer() step_timer = step_timing.StepTimer()
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Reading control data ## Reading control data
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
step_timer.start() step_timer.start()
gain_runs = dict() gain_runs = dict()
med_low_settings = [] med_low_settings = []
ctrl_src = ctrl_source_template.format(karabo_id_control) ctrl_src = ctrl_source_template.format(karabo_id_control)
for gain, run_n in enumerate(run_nums): for gain, run_n in enumerate(run_nums):
run_dc = RunDirectory(f"{in_folder}/r{run_n:04d}/") run_dc = RunDirectory(f"{in_folder}/r{run_n:04d}/")
gain_runs[run_n] = [gain, run_dc] gain_runs[run_n] = [gain, run_dc]
ctrl_data = jungfraulib.JungfrauCtrl(run_dc, ctrl_src) ctrl_data = jungfraulib.JungfrauCtrl(run_dc, ctrl_src)
# Read control data for the high gain run only. # Read control data for the high gain run only.
if run_n == run_high: if run_n == run_high:
run_mcells, sc_start = ctrl_data.get_memory_cells() run_mcells, sc_start = ctrl_data.get_memory_cells()
if not manual_slow_data: if not manual_slow_data:
integration_time = ctrl_data.get_integration_time() integration_time = ctrl_data.get_integration_time()
bias_voltage = ctrl_data.get_bias_voltage() bias_voltage = ctrl_data.get_bias_voltage()
gain_setting = ctrl_data.get_gain_setting() gain_setting = ctrl_data.get_gain_setting()
print(f"Gain setting is {gain_setting} ({ctrl_data.run_settings})") print(f"Gain setting is {gain_setting} ({ctrl_data.run_settings})")
print(f"Integration time is {integration_time} us") print(f"Integration time is {integration_time} us")
print(f"Bias voltage is {bias_voltage} V") print(f"Bias voltage is {bias_voltage} V")
if run_mcells == 1: if run_mcells == 1:
memory_cells = 1 memory_cells = 1
print('Dark runs in single cell mode, ' print('Dark runs in single cell mode, '
f'storage cell start: {sc_start:02d}') f'storage cell start: {sc_start:02d}')
else: else:
memory_cells = 16 memory_cells = 16
print('Dark runs in burst mode, ' print('Dark runs in burst mode, '
f'storage cell start: {sc_start:02d}') f'storage cell start: {sc_start:02d}')
else: else:
gain_mode = ctrl_data.get_gain_mode() gain_mode = ctrl_data.get_gain_mode()
med_low_settings.append(ctrl_data.run_mode) med_low_settings.append(ctrl_data.run_mode)
# A transperent workaround for old raw data with wrong/missing medium and low settings # A transperent workaround for old raw data with wrong/missing medium and low settings
if med_low_settings == [None, None]: if med_low_settings == [None, None]:
print("WARNING: run.settings is not stored in the data to read. " warning("run.settings is not stored in the data to read. "
f"Hence assuming gain_mode = {gain_mode} for adaptive old data.") f"Hence assuming gain_mode = {gain_mode} for adaptive old data.")
elif med_low_settings == ["dynamicgain", "forceswitchg1"]: elif med_low_settings == ["dynamicgain", "forceswitchg1"]:
print(f"WARNING: run.settings for medium and low gain runs are wrong {med_low_settings}. " warning(f"run.settings for medium and low gain runs are wrong {med_low_settings}. "
f"This is an expected bug for old raw data. Setting gain_mode to {gain_mode}.") f"This is an expected bug for old raw data. Setting gain_mode to {gain_mode}.")
# Validate that low_med_settings is not a mix of adaptive and fixed settings. # Validate that low_med_settings is not a mix of adaptive and fixed settings.
elif not (sorted(med_low_settings) in [fixed_settings, dynamic_settings, old_fixed_settings]): # noqa elif not (sorted(med_low_settings) in [fixed_settings, dynamic_settings, old_fixed_settings]): # noqa
raise ValueError( raise ValueError(
"Medium and low run settings are not as expected. " "Medium and low run settings are not as expected. "
f"Either {dynamic_settings}, {fixed_settings}, or {old_fixed_settings} are expected.\n" f"Either {dynamic_settings}, {fixed_settings}, or {old_fixed_settings} are expected.\n"
f"Got {sorted(med_low_settings)} for both runs, respectively.") f"Got {sorted(med_low_settings)} for both runs, respectively.")
print(f"Gain mode is {gain_mode} ({med_low_settings})") print(f"Gain mode is {gain_mode} ({med_low_settings})")
step_timer.done_step(f'Reading control data.') step_timer.done_step(f'Reading control data.')
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# set the operating condition # set the operating condition
condition = Conditions.Dark.jungfrau( condition = Conditions.Dark.jungfrau(
memory_cells=memory_cells, memory_cells=memory_cells,
bias_voltage=bias_voltage, bias_voltage=bias_voltage,
integration_time=integration_time, integration_time=integration_time,
gain_setting=gain_setting, gain_setting=gain_setting,
gain_mode=gain_mode, gain_mode=gain_mode,
) )
db_modules = get_pdu_from_db( db_modules = get_pdu_from_db(
karabo_id=karabo_id, karabo_id=karabo_id,
karabo_da=karabo_da, karabo_da=karabo_da,
constant=Constants.jungfrau.Offset(), constant=Constants.jungfrau.Offset(),
condition=condition, condition=condition,
cal_db_interface=cal_db_interface, cal_db_interface=cal_db_interface,
snapshot_at=creation_time) snapshot_at=creation_time)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Start retrieving existing constants for comparison # Start retrieving existing constants for comparison
mod_x_const = [(mod, const) for const in ["Offset", "Noise", "BadPixelsDark"] for mod in karabo_da] mod_x_const = [(mod, const) for const in ["Offset", "Noise", "BadPixelsDark"] for mod in karabo_da]
from cal_tools.tools import get_from_db from cal_tools.tools import get_from_db
from datetime import timedelta from datetime import timedelta
def retrieve_old_constant(mod, const): def retrieve_old_constant(mod, const):
dconst = getattr(Constants.jungfrau, const)() dconst = getattr(Constants.jungfrau, const)()
data, mdata = get_from_db( data, mdata = get_from_db(
karabo_id=karabo_id, karabo_id=karabo_id,
karabo_da=mod, karabo_da=mod,
constant=dconst, constant=dconst,
condition=condition, condition=condition,
empty_constant=None, empty_constant=None,
cal_db_interface=cal_db_interface, cal_db_interface=cal_db_interface,
creation_time=creation_time-timedelta(seconds=60) if creation_time else None, creation_time=creation_time-timedelta(seconds=60) if creation_time else None,
strategy="pdu_prior_in_time", strategy="pdu_prior_in_time",
verbosity=1, verbosity=1,
timeout=cal_db_timeout timeout=cal_db_timeout
) )
if mdata is None or data is None: if mdata is None or data is None:
timestamp = "Not found" timestamp = "Not found"
filepath = None filepath = None
h5path = None h5path = None
else: else:
timestamp = mdata.calibration_constant_version.begin_at.isoformat() timestamp = mdata.calibration_constant_version.begin_at.isoformat()
filepath = os.path.join( filepath = os.path.join(
mdata.calibration_constant_version.hdf5path, mdata.calibration_constant_version.hdf5path,
mdata.calibration_constant_version.filename mdata.calibration_constant_version.filename
) )
h5path = mdata.calibration_constant_version.h5path h5path = mdata.calibration_constant_version.h5path
return data, timestamp, filepath, h5path return data, timestamp, filepath, h5path
old_retrieval_pool = multiprocessing.Pool() old_retrieval_pool = multiprocessing.Pool()
old_retrieval_res = old_retrieval_pool.starmap_async( old_retrieval_res = old_retrieval_pool.starmap_async(
retrieve_old_constant, mod_x_const retrieve_old_constant, mod_x_const
) )
old_retrieval_pool.close() old_retrieval_pool.close()
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Use only high gain threshold for all gains in case of fixed_gain. # Use only high gain threshold for all gains in case of fixed_gain.
if gain_mode: # fixed_gain if gain_mode: # fixed_gain
offset_abs_threshold = [[offset_abs_threshold_low[0]]*3, [offset_abs_threshold_high[0]]*3] offset_abs_threshold = [[offset_abs_threshold_low[0]]*3, [offset_abs_threshold_high[0]]*3]
else: else:
offset_abs_threshold = [offset_abs_threshold_low, offset_abs_threshold_high] offset_abs_threshold = [offset_abs_threshold_low, offset_abs_threshold_high]
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
context = psh.context.ThreadContext(num_workers=multiprocessing.cpu_count()) context = psh.context.ThreadContext(num_workers=memory_cells)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
""" """
All jungfrau runs are taken through one acquisition, except for the forceswitch runs. All jungfrau runs are taken through one acquisition, except for the forceswitch runs.
While taking non-fixed dark runs, a procedure of multiple acquisitions is used to switch the storage cell indices. While taking non-fixed dark runs, a procedure of multiple acquisitions is used to switch the storage cell indices.
This is done for medium and low gain dark dynamic runs, only [forceswitchg1, forceswitchg2]: This is done for medium and low gain dark dynamic runs, only [forceswitchg1, forceswitchg2]:
Switching the cell indices in burst mode is a work around for hardware procedure Switching the cell indices in burst mode is a work around for hardware procedure
deficiency that produces wrong data for dark runs except for the first storage cell. deficiency that produces wrong data for dark runs except for the first storage cell.
This is why multiple acquisitions are taken to switch the used storage cells and This is why multiple acquisitions are taken to switch the used storage cells and
acquire data through two cells for each of the 16 cells instead of acquiring darks through all 16 cells. acquire data through two cells for each of the 16 cells instead of acquiring darks through all 16 cells.
""" """
print(f"Maximum trains to process is set to {max_trains}") print(f"Maximum trains to process is set to {max_trains}")
noise_map = dict() noise_map = dict()
offset_map = dict() offset_map = dict()
bad_pixels_map = dict() bad_pixels_map = dict()
for mod in karabo_da: for mod in karabo_da:
step_timer.start() step_timer.start()
instrument_src = instrument_source_template.format( instrument_src = instrument_source_template.format(
karabo_id, receiver_template.format(int(mod[-2:]))) karabo_id, receiver_template.format(int(mod[-2:])))
print(f"\n- Instrument data path for {mod} is {instrument_src}.") print(f"\n- Instrument data path for {mod} is {instrument_src}.")
offset_map[mod] = context.alloc(shape=(sensor_size+(memory_cells, 3)), fill=0) offset_map[mod] = context.alloc(
shape=(sensor_size+(memory_cells, 3)), fill=0, dtype=np.float32)
noise_map[mod] = context.alloc(like=offset_map[mod], fill=0) noise_map[mod] = context.alloc(like=offset_map[mod], fill=0)
bad_pixels_map[mod] = context.alloc(like=offset_map[mod], dtype=np.uint32, fill=0) bad_pixels_map[mod] = context.alloc(like=offset_map[mod], dtype=np.uint32, fill=0)
for run_n, [gain, run_dc] in gain_runs.items(): for run_n, [gain, run_dc] in gain_runs.items():
def process_cell(worker_id, array_index, cell_number): def process_cell(worker_id, array_index, cell_number):
cell_slice_idx = acelltable == cell_number cell_slice_idx = acelltable == cell_number
thiscell = images[..., cell_slice_idx] thiscell = images[..., cell_slice_idx] # [1024, 512, n_trains]
# Identify cells/trains with images of 0 pixels. # Identify cells/trains with images of 0 pixels.
# TODO: An investigation is ongoing by DET to identify reason for these empty images. # TODO: An investigation is ongoing by DET to identify reason for these empty images.
nonzero_adc = np.any(thiscell != 0 , axis=(0, 1)) nonzero_adc = np.any(thiscell != 0 , axis=(0, 1)) # [n_trains]
# Exclude empty images with 0 pixels, before calculating offset and noise # Exclude empty images with 0 pixels, before calculating offset and noise
thiscell = thiscell[..., nonzero_adc] thiscell = thiscell[..., nonzero_adc]
offset_map[mod][..., cell_number, gain] = np.mean(thiscell, axis=2) offset_map[mod][..., cell_number, gain] = np.mean( # [1024, 512]
noise_map[mod][..., cell_number, gain] = np.std(thiscell, axis=2) thiscell, axis=2, dtype=np.float32)
noise_map[mod][..., cell_number, gain] = np.std( # [1024, 512]
thiscell, axis=2, dtype=np.float32)
del thiscell
# Check if there are wrong bad gain values. # Check if there are wrong bad gain values.
# 1. Exclude empty images. # 1. Exclude empty images.
# 2. Indicate pixels with wrong gain value for any train for each cell. # 2. Indicate pixels with wrong gain value for any train for each cell.
# TODO: mean is used to use thresholds for accepting gain values, even if not 0 mean value. # TODO: mean is used to use thresholds for accepting gain values, even if not 0 mean value.
gain_avg = np.mean( gain_avg = np.mean( # [1024, 512]
gain_vals[..., cell_slice_idx][..., nonzero_adc], axis=2) gain_vals[..., cell_slice_idx][..., nonzero_adc],
axis=2, dtype=np.float32
)
# [1024, 512]
bad_pixels_map[mod][..., cell_number, gain][gain_avg != raw_g] |= BadPixels.WRONG_GAIN_VALUE.value bad_pixels_map[mod][..., cell_number, gain][gain_avg != raw_g] |= BadPixels.WRONG_GAIN_VALUE.value
print(f"Gain stage {gain}, run {run_n}") print(f"Gain stage {gain}, run {run_n}")
# load shape of data for memory cells, and detector size (imgs, cells, x, y) # load shape of data for memory cells, and detector size (imgs, cells, x, y)
n_imgs = run_dc[instrument_src, "data.adc"].shape[0] n_trains = run_dc[instrument_src, "data.adc"].shape[0]
# load number of data available, including trains with empty data. # load number of data available, including trains with empty data.
n_trains = len(run_dc.train_ids) all_trains = len(run_dc.train_ids)
instr_dc = run_dc.select(instrument_src, require_all=True) instr_dc = run_dc.select(instrument_src, require_all=True)
empty_trains = n_trains - n_imgs empty_trains = all_trains - n_trains
if empty_trains != 0: if empty_trains != 0:
print(f"\tWARNING: {mod} has {empty_trains} trains with empty data out of {n_trains} trains") # noqa print(f"{mod} has {empty_trains} empty trains out of {all_trains} trains")
if max_trains > 0: if max_trains > 0:
n_imgs = min(n_imgs, max_trains) n_trains = min(n_trains, max_trains)
print(f"Processing {n_imgs} images.") print(f"Processing {n_trains} images.")
# Select only requested number of images to process darks.
instr_dc = instr_dc.select_trains(np.s_[:n_imgs])
if n_imgs < min_trains: if n_trains == 0:
raise ValueError( raise ValueError(f"{run_n} has no trains to process.")
f"Less than {min_trains} trains are available in RAW data."
" Not enough data to process darks.")
if n_trains < min_trains:
warning(f"Less than {min_trains} trains are available in RAW data.")
# Select only requested number of images to process darks.
instr_dc = instr_dc.select_trains(np.s_[:n_trains])
images = np.transpose( images = np.transpose(
instr_dc[instrument_src, "data.adc"].ndarray(), (3, 2, 1, 0)) instr_dc[instrument_src, "data.adc"].ndarray(), (3, 2, 1, 0))
acelltable = np.transpose(instr_dc[instrument_src, "data.memoryCell"].ndarray()) acelltable = np.transpose(instr_dc[instrument_src, "data.memoryCell"].ndarray())
gain_vals = np.transpose( gain_vals = np.transpose(
instr_dc[instrument_src, "data.gain"].ndarray(), (3, 2, 1, 0)) instr_dc[instrument_src, "data.gain"].ndarray(), (3, 2, 1, 0))
# define gain value as saved in raw gain map # define gain value as saved in raw gain map
raw_g = 3 if gain == 2 else gain raw_g = 3 if gain == 2 else gain
if memory_cells == 1: if memory_cells == 1:
acelltable -= sc_start acelltable -= sc_start
# Only for dynamic medium and low gain runs [forceswitchg1, forceswitchg2] in burst mode. # Only for dynamic medium and low gain runs [forceswitchg1, forceswitchg2] in burst mode.
if gain_mode == 0 and gain > 0 and memory_cells == 16: if gain_mode == 0 and gain > 0 and memory_cells == 16:
# 255 similar to the receiver which uses the 255 # 255 similar to the receiver which uses the 255
# value to indicate a cell without an image. # value to indicate a cell without an image.
# image shape for forceswitchg1 and forceswitchg2 = (1024, 512, 2, trains) # image shape for forceswitchg1 and forceswitchg2 = (1024, 512, 2, trains)
# compared to expected shape of (1024, 512, 16, trains) for high gain run. # compared to expected shape of (1024, 512, 16, trains) for high gain run.
acelltable[1:] = 255 acelltable[1:] = 255
# Calculate offset and noise maps # Calculate offset and noise maps
context.map(process_cell, range(memory_cells)) context.map(process_cell, range(memory_cells))
del images
del acelltable
del gain_vals
step_timer.done_step(f'Creating Offset and noise constants for a module.') step_timer.done_step(f'Creating Offset and noise constants for a module.')
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
if detailed_report: if detailed_report:
display(Markdown("## Offset and Noise Maps:")) display(Markdown("## Offset and Noise Maps:"))
display(Markdown( display(Markdown(
"Below offset and noise maps for the high ($g_0$) gain stage are shown, " "Below offset and noise maps for the high ($g_0$) gain stage are shown, "
"alongside the distribution of these values. One expects block-like " "alongside the distribution of these values. One expects block-like "
"structures mapping to the ASICs of the detector")) "structures mapping to the ASICs of the detector"))
g_name = ['G0', 'G1', 'G2'] g_name = ['G0', 'G1', 'G2']
g_range = [(0, 8000), (8000, 16000), (8000, 16000)] g_range = [(0, 8000), (8000, 16000), (8000, 16000)]
n_range = [(0., 50.), (0., 50.), (0., 50.)] n_range = [(0., 50.), (0., 50.), (0., 50.)]
unit = '[ADCu]' unit = '[ADCu]'
# TODO: Fix plots arrangment and speed for Jungfrau burst mode. # TODO: Fix plots arrangment and speed for Jungfrau burst mode.
step_timer.start() step_timer.start()
for pdu, mod in zip(db_modules, karabo_da): for pdu, mod in zip(db_modules, karabo_da):
for g_idx in gains: for g_idx in gains:
for cell in range(0, memory_cells): for cell in range(0, memory_cells):
f_o0 = heatmapPlot( f_o0 = heatmapPlot(
np.swapaxes(offset_map[mod][..., cell, g_idx], 0, 1), np.swapaxes(offset_map[mod][..., cell, g_idx], 0, 1),
y_label="Row", y_label="Row",
x_label="Column", x_label="Column",
lut_label=unit, lut_label=unit,
aspect=1., aspect=1.,
vmin=g_range[g_idx][0], vmin=g_range[g_idx][0],
vmax=g_range[g_idx][1], vmax=g_range[g_idx][1],
title=f'Pedestal {g_name[g_idx]} - Cell {cell:02d} - Module {mod} ({pdu})') title=f'Pedestal {g_name[g_idx]} - Cell {cell:02d} - Module {mod} ({pdu})')
fo0, ax_o0 = plt.subplots() fo0, ax_o0 = plt.subplots()
res_o0 = histPlot( res_o0 = histPlot(
ax_o0, offset_map[mod][..., cell, g_idx], ax_o0, offset_map[mod][..., cell, g_idx],
bins=800, bins=800,
range=g_range[g_idx], range=g_range[g_idx],
facecolor='b', facecolor='b',
histotype='stepfilled', histotype='stepfilled',
) )
ax_o0.tick_params(axis='both',which='major',labelsize=15) ax_o0.tick_params(axis='both',which='major',labelsize=15)
ax_o0.set_title( ax_o0.set_title(
f'Module pedestal distribution - Cell {cell:02d} - Module {mod} ({pdu})', f'Module pedestal distribution - Cell {cell:02d} - Module {mod} ({pdu})',
fontsize=15) fontsize=15)
ax_o0.set_xlabel(f'Pedestal {g_name[g_idx]} {unit}',fontsize=15) ax_o0.set_xlabel(f'Pedestal {g_name[g_idx]} {unit}',fontsize=15)
ax_o0.set_yscale('log') ax_o0.set_yscale('log')
f_n0 = heatmapPlot( f_n0 = heatmapPlot(
np.swapaxes(noise_map[mod][..., cell, g_idx], 0, 1), np.swapaxes(noise_map[mod][..., cell, g_idx], 0, 1),
y_label="Row", y_label="Row",
x_label="Column", x_label="Column",
lut_label= unit, lut_label= unit,
aspect=1., aspect=1.,
vmin=n_range[g_idx][0], vmin=n_range[g_idx][0],
vmax=n_range[g_idx][1], vmax=n_range[g_idx][1],
title=f"RMS noise {g_name[g_idx]} - Cell {cell:02d} - Module {mod} ({pdu})", title=f"RMS noise {g_name[g_idx]} - Cell {cell:02d} - Module {mod} ({pdu})",
) )
fn0, ax_n0 = plt.subplots() fn0, ax_n0 = plt.subplots()
res_n0 = histPlot( res_n0 = histPlot(
ax_n0, ax_n0,
noise_map[mod][..., cell, g_idx], noise_map[mod][..., cell, g_idx],
bins=100, bins=100,
range=n_range[g_idx], range=n_range[g_idx],
facecolor='b', facecolor='b',
histotype='stepfilled', histotype='stepfilled',
) )
ax_n0.tick_params(axis='both', which='major', labelsize=15) ax_n0.tick_params(axis='both', which='major', labelsize=15)
ax_n0.set_title( ax_n0.set_title(
f'Module noise distribution - Cell {cell:02d} - Module {mod} ({pdu})', f'Module noise distribution - Cell {cell:02d} - Module {mod} ({pdu})',
fontsize=15) fontsize=15)
ax_n0.set_xlabel( ax_n0.set_xlabel(
f'RMS noise {g_name[g_idx]} ' + unit, fontsize=15) f'RMS noise {g_name[g_idx]} ' + unit, fontsize=15)
plt.show() plt.show()
step_timer.done_step(f'Plotting offset and noise maps.') step_timer.done_step(f'Plotting offset and noise maps.')
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Bad Pixel Map ### ## Bad Pixel Map ###
The bad pixel map is deduced by comparing offset and noise of each pixel ($v_i$) and each gain ($g$) against the median value for that gain stage: The bad pixel map is deduced by comparing offset and noise of each pixel ($v_i$) and each gain ($g$) against the median value for that gain stage:
$$ $$
v_i > \mathrm{median}(v_{k,g}) + n \sigma_{v_{k,g}} v_i > \mathrm{median}(v_{k,g}) + n \sigma_{v_{k,g}}
$$ $$
or or
$$ $$
v_i < \mathrm{median}(v_{k,g}) - n \sigma_{v_{k,g}} v_i < \mathrm{median}(v_{k,g}) - n \sigma_{v_{k,g}}
$$ $$
Values are encoded in a 32 bit mask, where for the dark image deduced bad pixels the following non-zero entries are relevant: Values are encoded in a 32 bit mask, where for the dark image deduced bad pixels the following non-zero entries are relevant:
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
def print_bp_entry(bp): def print_bp_entry(bp):
print("{:<30s} {:032b} -> {}".format(bp.name, bp.value, int(bp.value))) print("{:<30s} {:032b} -> {}".format(bp.name, bp.value, int(bp.value)))
print_bp_entry(BadPixels.OFFSET_OUT_OF_THRESHOLD) print_bp_entry(BadPixels.OFFSET_OUT_OF_THRESHOLD)
print_bp_entry(BadPixels.NOISE_OUT_OF_THRESHOLD) print_bp_entry(BadPixels.NOISE_OUT_OF_THRESHOLD)
print_bp_entry(BadPixels.OFFSET_NOISE_EVAL_ERROR) print_bp_entry(BadPixels.OFFSET_NOISE_EVAL_ERROR)
print_bp_entry(BadPixels.WRONG_GAIN_VALUE) print_bp_entry(BadPixels.WRONG_GAIN_VALUE)
def eval_bpidx(d): def eval_bpidx(d):
mdn = np.nanmedian(d, axis=(0, 1))[None, None, :, :] mdn = np.nanmedian(d, axis=(0, 1))[None, None, :, :]
std = np.nanstd(d, axis=(0, 1))[None, None, :, :] std = np.nanstd(d, axis=(0, 1))[None, None, :, :]
idx = (d > badpixel_threshold_sigma*std+mdn) | (d < (-badpixel_threshold_sigma)*std+mdn) idx = (d > badpixel_threshold_sigma*std+mdn) | (d < (-badpixel_threshold_sigma)*std+mdn)
return idx return idx
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
step_timer.start() step_timer.start()
for pdu, mod in zip(db_modules, karabo_da): for pdu, mod in zip(db_modules, karabo_da):
display(Markdown(f"### Badpixels for module {mod} ({pdu}):")) display(Markdown(f"### Badpixels for module {mod} ({pdu}):"))
offset_abs_threshold = np.array(offset_abs_threshold) offset_abs_threshold = np.array(offset_abs_threshold)
bad_pixels_map[mod][eval_bpidx(offset_map[mod])] |= BadPixels.OFFSET_OUT_OF_THRESHOLD.value bad_pixels_map[mod][eval_bpidx(offset_map[mod])] |= BadPixels.OFFSET_OUT_OF_THRESHOLD.value
bad_pixels_map[mod][~np.isfinite(offset_map[mod])] |= BadPixels.OFFSET_NOISE_EVAL_ERROR.value bad_pixels_map[mod][~np.isfinite(offset_map[mod])] |= BadPixels.OFFSET_NOISE_EVAL_ERROR.value
bad_pixels_map[mod][eval_bpidx(noise_map[mod])] |= BadPixels.NOISE_OUT_OF_THRESHOLD.value bad_pixels_map[mod][eval_bpidx(noise_map[mod])] |= BadPixels.NOISE_OUT_OF_THRESHOLD.value
bad_pixels_map[mod][~np.isfinite(noise_map[mod])] |= BadPixels.OFFSET_NOISE_EVAL_ERROR.value bad_pixels_map[mod][~np.isfinite(noise_map[mod])] |= BadPixels.OFFSET_NOISE_EVAL_ERROR.value
bad_pixels_map[mod][(offset_map[mod] < offset_abs_threshold[0][None, None, None, :]) | (offset_map[mod] > offset_abs_threshold[1][None, None, None, :])] |= BadPixels.OFFSET_OUT_OF_THRESHOLD.value # noqa bad_pixels_map[mod][(offset_map[mod] < offset_abs_threshold[0][None, None, None, :]) | (offset_map[mod] > offset_abs_threshold[1][None, None, None, :])] |= BadPixels.OFFSET_OUT_OF_THRESHOLD.value # noqa
if detailed_report: if detailed_report:
for g_idx in gains: for g_idx in gains:
for cell in range(memory_cells): for cell in range(memory_cells):
bad_pixels = bad_pixels_map[mod][:, :, cell, g_idx] bad_pixels = bad_pixels_map[mod][:, :, cell, g_idx]
fn_0 = heatmapPlot( fn_0 = heatmapPlot(
np.swapaxes(bad_pixels, 0, 1), np.swapaxes(bad_pixels, 0, 1),
y_label="Row", y_label="Row",
x_label="Column", x_label="Column",
lut_label=f"Badpixels {g_name[g_idx]} [ADCu]", lut_label=f"Badpixels {g_name[g_idx]} [ADCu]",
aspect=1., aspect=1.,
vmin=0, vmax=5, vmin=0, vmax=5,
title=f'G{g_idx} Bad pixel map - Cell {cell:02d} - Module {mod} ({pdu})') title=f'G{g_idx} Bad pixel map - Cell {cell:02d} - Module {mod} ({pdu})')
step_timer.done_step(f'Creating bad pixels constant') step_timer.done_step(f'Creating bad pixels constant')
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Inject and save calibration constants ## Inject and save calibration constants
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
step_timer.start() step_timer.start()
for mod, db_mod in zip(karabo_da, db_modules): for mod, db_mod in zip(karabo_da, db_modules):
constants = { constants = {
'Offset': np.moveaxis(offset_map[mod], 0, 1), 'Offset': np.moveaxis(offset_map[mod], 0, 1),
'Noise': np.moveaxis(noise_map[mod], 0, 1), 'Noise': np.moveaxis(noise_map[mod], 0, 1),
'BadPixelsDark': np.moveaxis(bad_pixels_map[mod], 0, 1), 'BadPixelsDark': np.moveaxis(bad_pixels_map[mod], 0, 1),
} }
md = None md = None
for key, const_data in constants.items(): for key, const_data in constants.items():
const = getattr(Constants.jungfrau, key)() const = getattr(Constants.jungfrau, key)()
const.data = const_data const.data = const_data
for parm in condition.parameters: for parm in condition.parameters:
if parm.name == "Integration Time": if parm.name == "Integration Time":
parm.lower_deviation = time_limits parm.lower_deviation = time_limits
parm.upper_deviation = time_limits parm.upper_deviation = time_limits
if db_output: if db_output:
md = send_to_db( md = send_to_db(
db_module=db_mod, db_module=db_mod,
karabo_id=karabo_id, karabo_id=karabo_id,
constant=const, constant=const,
condition=condition, condition=condition,
file_loc=file_loc, file_loc=file_loc,
report_path=report, report_path=report,
cal_db_interface=cal_db_interface, cal_db_interface=cal_db_interface,
creation_time=creation_time, creation_time=creation_time,
timeout=cal_db_timeout, timeout=cal_db_timeout,
) )
if local_output: if local_output:
md = save_const_to_h5( md = save_const_to_h5(
db_module=db_mod, db_module=db_mod,
karabo_id=karabo_id, karabo_id=karabo_id,
constant=const, constant=const,
condition=condition, condition=condition,
data=const.data, data=const.data,
file_loc=file_loc, file_loc=file_loc,
report=report, report=report,
creation_time=creation_time, creation_time=creation_time,
out_folder=out_folder, out_folder=out_folder,
) )
print(f"Calibration constant {key} is stored locally at {out_folder}.\n") print(f"Calibration constant {key} is stored locally at {out_folder}.\n")
print("Constants parameter conditions are:\n") print("Constants parameter conditions are:\n")
print( print(
f"• Bias voltage: {bias_voltage}\n" f"• Bias voltage: {bias_voltage}\n"
f"• Memory cells: {memory_cells}\n" f"• Memory cells: {memory_cells}\n"
f"• Integration time: {integration_time}\n" f"• Integration time: {integration_time}\n"
f"• Gain setting: {gain_setting}\n" f"• Gain setting: {gain_setting}\n"
f"• Gain mode: {gain_mode}\n" f"• Gain mode: {gain_mode}\n"
f"• Creation time: {md.calibration_constant_version.begin_at if md is not None else creation_time}\n") # noqa f"• Creation time: {md.calibration_constant_version.begin_at if md is not None else creation_time}\n") # noqa
step_timer.done_step("Injecting constants.") step_timer.done_step("Injecting constants.")
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
print(f"Total processing time {step_timer.timespan():.01f} s") print(f"Total processing time {step_timer.timespan():.01f} s")
step_timer.print_summary() step_timer.print_summary()
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# now we need the old constants # now we need the old constants
old_const = {} old_const = {}
old_mdata = {} old_mdata = {}
old_retrieval_res.wait() old_retrieval_res.wait()
for (mod, const), (data, timestamp, filepath, h5path) in zip( for (mod, const), (data, timestamp, filepath, h5path) in zip(
mod_x_const, old_retrieval_res.get()): mod_x_const, old_retrieval_res.get()):
old_const.setdefault(mod, {})[const] = data old_const.setdefault(mod, {})[const] = data
old_mdata.setdefault(mod, {})[const] = { old_mdata.setdefault(mod, {})[const] = {
"timestamp": timestamp, "timestamp": timestamp,
"filepath": filepath, "filepath": filepath,
"h5path": h5path, "h5path": h5path,
} }
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
display(Markdown("## The following pre-existing constants are used for comparison:")) display(Markdown("## The following pre-existing constants are used for comparison:"))
for mod, consts in old_mdata.items(): for mod, consts in old_mdata.items():
pdu = db_modules[karabo_da.index(mod)] pdu = db_modules[karabo_da.index(mod)]
display(Markdown(f"- {mod} ({pdu})")) display(Markdown(f"- {mod} ({pdu})"))
for const in consts: for const in consts:
display(Markdown(f" - {const} at {consts[const]['timestamp']}")) display(Markdown(f" - {const} at {consts[const]['timestamp']}"))
# saving locations of old constants for summary notebook # saving locations of old constants for summary notebook
with open(f"{metadata_folder or out_folder}/module_metadata_{mod}.yml", "w") as fd: with open(f"{metadata_folder or out_folder}/module_metadata_{mod}.yml", "w") as fd:
yaml.safe_dump( yaml.safe_dump(
{ {
"module": mod, "module": mod,
"pdu": pdu, "pdu": pdu,
"old-constants": old_mdata[mod], "old-constants": old_mdata[mod],
}, },
fd, fd,
) )
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment