Skip to content
Snippets Groups Projects
Commit bc159d5f authored by Karim Ahmed's avatar Karim Ahmed
Browse files

error out only if all sources are empty

parent 073d2954
No related branches found
No related tags found
1 merge request!817[AGIPD] [Correct] error out only if all sources are empty
%% Cell type:markdown id: tags:
# AGIPD Retrieving Constants Pre-correction #
Author: European XFEL Detector Group, Version: 1.0
Retrieving Required Constants for Offline Calibration of the AGIPD Detector
%% Cell type:code id: tags:
``` python
in_folder = "/gpfs/exfel/exp/SPB/202030/p900119/raw" # the folder to read data from, required
out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/AGIPD_" # the folder to output to, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
modules = [-1] # modules to correct, set to -1 for all, range allowed
run = 80 # runs to process, required
karabo_id = "SPB_DET_AGIPD1M-1" # karabo karabo_id
karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators
ctrl_source_template = '{}/MDL/FPGA_COMP_TEST' # path to control information
instrument_source_template = '{}/DET/{}:xtdf' # path in the HDF5 file to images
receiver_template = "{}CH0" # inset for receiver devices
karabo_id_control = "SPB_IRU_AGIPD1M1" # karabo-id for control device
# Parameters for calibration database.
cal_db_interface = "tcp://max-exfl016:8015#8045" # the database interface to use
creation_date_offset = "00:00:00" # add an offset to creation date, e.g. to get different constants
creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00"
slopes_ff_from_files = "" # Path to locally stored SlopesFF and BadPixelsFF constants
mem_cells = -1 # number of memory cells used, set to 0 to automatically infer
bias_voltage = -1 # bias voltage, set to 0 to use stored value in slow data.
acq_rate = -1. # the detector acquisition rate, use 0 to try to auto-determine
gain_setting = -1 # the gain setting, use -1 to use value stored in slow data.
gain_mode = -1 # gain mode (0: adaptive, 1-3 fixed high/med/low, -1: read from CONTROL data)
integration_time = -1 # integration time, negative values for auto-detection.
# Correction Booleans
only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.
rel_gain = False # do relative gain correction based on PC data
xray_gain = True # do relative gain correction based on xray data
blc_noise = False # if set, baseline correction via noise peak location is attempted
blc_stripes = False # if set, baseline corrected via stripes
blc_hmatch = False # if set, base line correction via histogram matching is attempted
adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value
```
%% Cell type:code id: tags:
``` python
# Fill dictionaries comprising bools and arguments for correction and data analysis
# Here the hierarichy and dependencies for correction booleans are defined
corr_bools = {}
# offset is at the bottom of AGIPD correction pyramid.
corr_bools["only_offset"] = only_offset
# Dont apply any corrections if only_offset is requested
if not only_offset:
corr_bools["adjust_mg_baseline"] = adjust_mg_baseline
corr_bools["rel_gain"] = rel_gain
corr_bools["xray_corr"] = xray_gain
corr_bools["blc_noise"] = blc_noise
corr_bools["blc_hmatch"] = blc_hmatch
```
%% Cell type:code id: tags:
``` python
import numpy as np
from logging import warning
from pathlib import Path
from typing import Tuple
import multiprocessing
from datetime import timedelta
from dateutil import parser
from extra_data import RunDirectory
from cal_tools.agipdlib import (
AgipdCtrl,
SnowResolution,
assemble_constant_dict,
)
from cal_tools.enums import AgipdGainMode
from cal_tools.tools import (
calcat_creation_time,
get_from_db,
module_index_to_qm,
CalibrationMetadata,
)
from iCalibrationDB import Conditions, Constants, Detectors
```
%% Cell type:code id: tags:
``` python
# slopes_ff_from_files left as str for now
in_folder = Path(in_folder)
out_folder = Path(out_folder)
metadata = CalibrationMetadata(metadata_folder or out_folder)
# Constant paths & timestamps are saved under retrieved-constants in calibration_metadata.yml
retrieved_constants = metadata.setdefault("retrieved-constants", {})
```
%% Cell type:code id: tags:
``` python
# Run's creation time:
creation_time = calcat_creation_time(in_folder, run, creation_time)
offset = parser.parse(creation_date_offset)
delta = timedelta(hours=offset.hour, minutes=offset.minute, seconds=offset.second)
creation_time += delta
print(f"Creation time: {creation_time}")
print(f"Outputting to {out_folder}")
out_folder.mkdir(parents=True, exist_ok=True)
melt_snow = False if corr_bools["only_offset"] else SnowResolution.NONE
```
%% Cell type:code id: tags:
``` python
ctrl_src = ctrl_source_template.format(karabo_id_control)
print(f"Detector in use is {karabo_id}")
# Extracting Instrument string
instrument = karabo_id.split("_")[0]
# Evaluate detector instance for mapping
if instrument == "SPB":
nmods = 16
elif instrument == "MID":
nmods = 16
elif instrument == "HED":
nmods = 8
print(f"Instrument {instrument}")
if karabo_da[0] == '-1':
if modules[0] == -1:
modules = list(range(nmods))
karabo_da = ["AGIPD{:02d}".format(i) for i in modules]
else:
modules = [int(x[-2:]) for x in karabo_da]
```
%% Cell type:code id: tags:
``` python
run_dc = RunDirectory(in_folder / f"r{run:04d}")
instrument_src = instrument_source_template.format(karabo_id, receiver_template)
instr_dc = run_dc.select(instrument_src.format("*"), require_all=True)
instr_dc = run_dc.select(instrument_src.format("*"))
for m in modules:
# Remove empty sources from `instr_dc`
if instr_dc[instrument_src.format(m), 'image.data'].shape[0] == 0:
instr_dc = instr_dc.deselect(instrument_src.format(m))
if not instr_dc.train_ids:
if not instr_dc.all_sources:
raise ValueError(f"No images found for {in_folder / f'r{run:04d}'}")
```
%% Cell type:code id: tags:
``` python
agipd_cond = AgipdCtrl(
run_dc=run_dc,
image_src=None, # Not neededed, as we wont read mem_cells or acq_rate.
ctrl_src=ctrl_src,
)
if gain_setting == -1:
gain_setting = agipd_cond.get_gain_setting(creation_time)
if bias_voltage == -1:
bias_voltage = agipd_cond.get_bias_voltage(karabo_id_control)
if integration_time == -1:
integration_time = agipd_cond.get_integration_time()
if gain_mode == -1:
gain_mode = agipd_cond.get_gain_mode()
else:
gain_mode = AgipdGainMode(gain_mode)
```
%% Cell type:markdown id: tags:
## Retrieve Constants ##
%% Cell type:code id: tags:
``` python
pc_bools = [ # flags that points to the need for retrieving SlopesPC and BadPixelsPC constants.
corr_bools.get("rel_gain"),
corr_bools.get("adjust_mg_baseline"),
corr_bools.get('blc_noise'),
corr_bools.get('blc_hmatch'),
corr_bools.get('blc_stripes'),
melt_snow,
]
```
%% Cell type:code id: tags:
``` python
def retrieve_constants(
k_da: str, idx: int
) -> Tuple[str, str, float, float, str, dict]:
"""
Retrieve constants for a module.
:return:
k_da: karabo data aggregator.
acq_rate: acquisition rate parameter.
mem_cells: number of memory cells.
mdata_dict: (DICT) dictionary with the metadata for the retrieved constants.
"""
# check if this module has images to process.
if instrument_src.format(idx) not in instr_dc.all_sources:
print("ERROR: No raw images found for "
f"{module_index_to_qm(idx)}({k_da}).")
return None, k_da, None, None
agipd_cond.image_src = instrument_src.format(idx)
if mem_cells == -1:
# Read value from fast data.
local_mem_cells = agipd_cond.get_num_cells()
else:
# or use overriding notebook parameter.
local_mem_cells = mem_cells
if acq_rate == -1.:
local_acq_rate = agipd_cond.get_acq_rate()
else:
local_acq_rate = acq_rate
const_dict = assemble_constant_dict(
corr_bools,
pc_bools,
local_mem_cells,
bias_voltage,
gain_setting,
local_acq_rate,
photon_energy=9.2,
gain_mode=gain_mode,
beam_energy=None,
only_dark=False,
integration_time=integration_time
)
# Retrieve multiple constants through an input dictionary
# to return a dict of useful metadata.
mdata_dict = dict()
mdata_dict["constants"] = dict()
mdata_dict["physical-detector-unit"] = None # initialization
for const_name, (const_init_fun, const_shape, (cond_type, cond_param)) in const_dict.items(): # noqa
if gain_mode and const_name in ("ThresholdsDark",):
continue
# saving metadata in a dict
const_mdata = dict()
mdata_dict["constants"][const_name] = const_mdata
if slopes_ff_from_files and const_name in ["SlopesFF", "BadPixelsFF"]:
const_mdata["file-path"] = (
f"{slopes_ff_from_files}/slopesff_bpmask_module_{module_index_to_qm(idx)}.h5") # noqa
const_mdata["creation-time"] = "00:00:00"
continue
if gain_mode and const_name in (
"BadPixelsPC", "SlopesPC", "BadPixelsFF", "SlopesFF"
):
param_copy = cond_param.copy()
del param_copy["gain_mode"]
condition = getattr(Conditions, cond_type).AGIPD(**param_copy)
else:
condition = getattr(Conditions, cond_type).AGIPD(**cond_param)
_, mdata = get_from_db(
karabo_id,
k_da,
getattr(Constants.AGIPD, const_name)(),
condition,
getattr(np, const_init_fun)(const_shape),
cal_db_interface,
creation_time,
meta_only=True,
verbosity=0,
)
mdata_const = mdata.calibration_constant_version
# check if constant was sucessfully retrieved.
if mdata.comm_db_success:
const_mdata["file-path"] = (
f"{mdata_const.hdf5path}" f"{mdata_const.filename}"
)
const_mdata["creation-time"] = f"{mdata_const.begin_at}"
mdata_dict["physical-detector-unit"] = mdata_const.device_name
else:
const_mdata["file-path"] = const_dict[const_name][:2]
const_mdata["creation-time"] = None
return mdata_dict, k_da, local_acq_rate, local_mem_cells
```
%% Cell type:code id: tags:
``` python
inp = []
da_to_qm = dict()
for module_index, k_da in zip(modules, karabo_da):
da_to_qm[k_da] = module_index_to_qm(module_index)
if k_da in retrieved_constants:
print(
f"Constant for {k_da} already in calibration_metadata.yml, won't query again.")
continue
inp.append((k_da, module_index))
```
%% Cell type:code id: tags:
``` python
with multiprocessing.Pool(processes=nmods) as pool:
results = pool.starmap(retrieve_constants, inp)
```
%% Cell type:code id: tags:
``` python
acq_rate_mods = []
mem_cells_mods = []
for md_dict, k_da, acq_rate, mem_cells in results:
if acq_rate is None and mem_cells is None:
continue
md_dict, k_da, acq_rate, mem_cells
retrieved_constants[k_da] = md_dict
mem_cells_mods.append(mem_cells)
acq_rate_mods.append(acq_rate)
# Validate that mem_cells and acq_rate are the same for all modules.
# TODO: Should a warning be enough?
if len(set(mem_cells_mods)) != 1 or len(set(acq_rate_mods)) != 1:
print(
"WARNING: Number of memory cells or "
"acquisition rate are not identical for all modules.\n"
f"mem_cells: {mem_cells_mods}.\nacq_rate: {acq_rate_mods}.")
# check if it is requested not to retrieve any constants from the database
print("\nRetrieved constants for modules:",
', '.join([module_index_to_qm(x) for x in modules]))
print(f"Operating conditions are:")
print(f"• Bias voltage: {bias_voltage}")
print(f"• Memory cells: {mem_cells}")
print(f"• Acquisition rate: {acq_rate}")
print(f"• Gain mode: {gain_mode.name}")
print(f"• Gain setting: {gain_setting}")
print(f"• Integration time: {integration_time}")
print(f"• Photon Energy: 9.2")
print("Constant metadata is saved under \"retrieved-constants\" in calibration_metadata.yml\n")
```
%% Cell type:code id: tags:
``` python
print("Using constants with creation times:")
timestamps = {}
for k_da, module_name in da_to_qm.items():
if k_da not in retrieved_constants.keys():
continue
module_timestamps = timestamps[module_name] = {}
module_constants = retrieved_constants[k_da]
print(f"{module_name}:")
for cname, mdata in module_constants["constants"].items():
if hasattr(mdata["creation-time"], 'strftime'):
mdata["creation-time"] = mdata["creation-time"].strftime('%y-%m-%d %H:%M')
print(f'{cname:.<12s}', mdata["creation-time"])
for cname in ['Offset', 'SlopesPC', 'SlopesFF']:
if cname in module_constants["constants"]:
module_timestamps[cname] = module_constants["constants"][cname]["creation-time"]
else:
module_timestamps[cname] = "NA"
time_summary = retrieved_constants.setdefault("time-summary", {})
time_summary["SAll"] = timestamps
metadata.save()
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment