Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycalibration
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
pycalibration
Commits
f32d6e7f
Commit
f32d6e7f
authored
2 years ago
by
Philipp Schmidt
Browse files
Options
Downloads
Patches
Plain Diff
Keep result arrays in a single dict indexed by detector name in REMI reconstruction
parent
966273a1
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!822
[REMI] Save pulse amplitudes during discrimination
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
notebooks/REMI/REMI_Digitize_and_Transform.ipynb
+38
-29
38 additions, 29 deletions
notebooks/REMI/REMI_Digitize_and_Transform.ipynb
with
38 additions
and
29 deletions
notebooks/REMI/REMI_Digitize_and_Transform.ipynb
+
38
−
29
View file @
f32d6e7f
...
...
@@ -97,6 +97,18 @@
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def finite_flattened_slice(array, slice_=np.s_[:]):\n",
" \"\"\"Return flattened and finite values for a given slice.\"\"\"\n",
" sliced_array = array[slice_]\n",
" return sliced_array[np.isfinite(sliced_array)]"
]
},
{
"cell_type": "code",
"execution_count": null,
...
...
@@ -500,8 +512,7 @@
"psh.set_default_context('processes', num_workers=remi.get_num_workers(mp_find_edges))\n",
"threadpool_limits(limits=remi.get_num_workers(mt_avg_trace))\n",
"\n",
"edges_by_det = {}\n",
"avg_traces_by_det = {}\n",
"det_data = {}\n",
"\n",
"for det_name, det in remi['detector'].items():\n",
" det_sourcekeys = remi.get_detector_sourcekeys(det_name)\n",
...
...
@@ -552,11 +563,14 @@
" with timing(f'find_edges, {det_name}'):\n",
" psh.map(find_edges, dc.select(det_sourcekeys))\n",
" \n",
" edges_by_det[det_name] = edges\n",
" avg_traces_by_det[det_name] = avg_traces.sum(axis=0) / len(dc.train_ids)\n",
" \n",
" with np.printoptions(precision=2, suppress=True):\n",
" print(edges[:5, :, :8])"
" \n",
" det_data[det_name] = {\n",
" 'edges': edges,\n",
" 'avg_trace': avg_traces.sum(axis=0) / len(dc.train_ids)\n",
" }"
]
},
{
...
...
@@ -578,7 +592,7 @@
" fig.text(0.02, 0.98, det_name.upper(), rotation=90, ha='left', va='top', size='x-large')\n",
"\n",
" for edge_idx, edge_name in enumerate(['u1', 'u2', 'v1', 'v2', 'w1', 'w2', 'mcp']):\n",
" axs[edge_idx].plot(
avg_traces_by_det[det_name
][edge_idx], lw=1)\n",
" axs[edge_idx].plot(
det_data[det_name]['avg_trace'
][edge_idx], lw=1)\n",
" axs[edge_idx].tick_params(labelbottom=False)\n",
" axs[edge_idx].set_ylabel(edge_name)\n",
" \n",
...
...
@@ -590,7 +604,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sample for
digitized trac
es"
"### Sample for
found edg
es"
]
},
{
...
...
@@ -600,7 +614,7 @@
"outputs": [],
"source": [
"for i, det_name in enumerate(remi['detector'].keys()):\n",
" edges =
edges_by_det[det_name
]\n",
" edges =
det_data[det_name]['edges'
]\n",
" \n",
" fig = plt.figure(num=100+i, figsize=(9.5, 8))\n",
" grid = fig.add_gridspec(ncols=2, nrows=4, left=0.1, right=0.98, top=0.98, bottom=0.1)\n",
...
...
@@ -665,10 +679,10 @@
"for i, det_name in enumerate(remi['detector'].keys()):\n",
" fig = plt.figure(num=20+i, figsize=(9.5, 6))\n",
" \n",
" edges =
edges_by_det[det_name
]\n",
" edges =
det_data[det_name]['edges'
]\n",
" \n",
" min_edge =
edges[np.isfinite(edges)].min(
)\n",
" max_edge =
edges[np.isfinite(edges)].max(
)\n",
" min_edge =
np.nanmin(edges
)\n",
" max_edge =
np.nanmax(edges
)\n",
"\n",
" grid = fig.add_gridspec(ncols=3, nrows=3, left=0.08, right=0.98, top=0.95, hspace=0.4)\n",
"\n",
...
...
@@ -695,8 +709,6 @@
" numx.plot(np.arange(len(num_edges)) * agg_window, num_edges, label=edge_name, **plot_kwargs)\n",
" max_num_edges = max(max_num_edges, num_edges.max())\n",
"\n",
" cur_edges = edges[:, edge_idx, :].flatten()\n",
"\n",
" if edge_idx < 6:\n",
" row = 1 + edge_idx % 2\n",
" col = edge_idx // 2\n",
...
...
@@ -706,8 +718,9 @@
"\n",
" ax = fig.add_subplot(grid[row, col])\n",
" ax.set_title(f'TOF spectrum: {edge_name}')\n",
" y, _, _ = ax.hist(cur_edges[np.isfinite(cur_edges)], bins=int((max_edge - min_edge) // 5),\n",
" range=(min_edge, max_edge), color=plot_kwargs['c'], histtype='step', linewidth=1)\n",
" y, _, _ = ax.hist(finite_flattened_slice(edges, np.s_[:, edge_idx, :]),\n",
" bins=int((max_edge - min_edge) // 5), range=(min_edge, max_edge),\n",
" color=plot_kwargs['c'], histtype='step', linewidth=1)\n",
" hist_axs.append(ax)\n",
"\n",
" max_spectral_intensity = max(max_spectral_intensity, y.max())\n",
...
...
@@ -737,7 +750,7 @@
"outputs": [],
"source": [
"for i, det_name in enumerate(remi['detector'].keys()):\n",
" edges =
edges_by_det[det_name
]\n",
" edges =
det_data[det_name]['edges'
]\n",
" \n",
" sort = remi.get_dld_sorter(det_name)\n",
" \n",
...
...
@@ -781,12 +794,8 @@
"source": [
"psh.set_default_context('processes', num_workers=remi.get_num_workers(mp_rec_hits))\n",
"\n",
"signals_by_det = {}\n",
"hits_by_det = {}\n",
"hit_counts_by_det = {}\n",
"\n",
"for det_name, det in remi['detector'].items():\n",
" edges =
edges_by_det[det_name
]\n",
" edges =
det_data[det_name]['edges'
]\n",
" \n",
" signals = psh.alloc(shape=(num_pulses, 50), dtype=signal_dt, fill=np.nan)\n",
" hits = psh.alloc(shape=(num_pulses, 50), dtype=hit_dt, fill=(np.nan, np.nan, np.nan, -1))\n",
...
...
@@ -804,9 +813,7 @@
" with timing(f'rec_hits, {det_name}'):\n",
" psh.map(reconstruct_hits, dc.train_ids)\n",
" \n",
" signals_by_det[det_name] = signals\n",
" hits_by_det[det_name] = hits\n",
" hit_counts_by_det[det_name] = hit_counts"
" det_data[det_name].update(signals=signals, hits=hits, hit_counts=hit_counts)"
]
},
{
...
...
@@ -823,7 +830,7 @@
"for det_name in remi['detector'].keys():\n",
" agg_window = num_pulses // 1000\n",
" \n",
" num_hits = np.isfinite(
hits_by_det
[det_name]['x']).sum(axis=1)\n",
" num_hits = np.isfinite(
det_data
[det_name]['
hits']['
x']).sum(axis=1)\n",
" num_hits = num_hits[:(len(num_hits) // agg_window) * agg_window]\n",
" num_hits = num_hits.reshape(-1, agg_window).mean(axis=1)\n",
" max_num_hits = max(max_num_hits, num_hits.max())\n",
...
...
@@ -885,7 +892,7 @@
"outputs": [],
"source": [
"for i, det_name in enumerate(remi['detector'].keys()):\n",
" hits =
hits_by_det
[det_name]\n",
" hits =
det_data
[det_name]
['hits']
\n",
" \n",
" fig, ax = plt.subplots(num=60+i, figsize=(9.5, 5), ncols=1, clear=True,\n",
" gridspec_kw=dict(left=0.08, right=0.91, top=0.8))\n",
...
...
@@ -960,7 +967,7 @@
"outputs": [],
"source": [
"for i, det_name in enumerate(remi['detector'].keys()):\n",
" flat_hits =
hits_by_det
[det_name].reshape(-1)\n",
" flat_hits =
det_data
[det_name]
['hits']
.reshape(-1)\n",
" flat_hits = flat_hits[np.isfinite(flat_hits[:]['x'])]\n",
" flat_hits = flat_hits[flat_hits['m'] < 10]\n",
"\n",
...
...
@@ -1064,20 +1071,22 @@
" \n",
" cur_fast_data = outp.create_instrument_source(f'{cur_device_id}:{det_output_key}')\n",
" \n",
" cur_data = det_data[det_name]\n",
" \n",
" if save_raw_triggers:\n",
" cur_fast_data.create_key('raw.triggers', triggers[pulse_mask],\n",
" chunks=tuple(chunks_triggers), **dataset_kwargs)\n",
" \n",
" if save_raw_edges:\n",
" cur_fast_data.create_key('raw.edges',
edges_by_det[det_name
][pulse_mask],\n",
" cur_fast_data.create_key('raw.edges',
cur_data['edges'
][pulse_mask],\n",
" chunks=tuple(chunks_edges), **dataset_kwargs)\n",
" \n",
" if save_rec_signals:\n",
" cur_fast_data.create_key('rec.signals',
signals_by_det[det_name
][pulse_mask],\n",
" cur_fast_data.create_key('rec.signals',
cur_data['signals'
][pulse_mask],\n",
" chunks=tuple(chunks_signals), **dataset_kwargs)\n",
" \n",
" if save_rec_hits:\n",
" cur_fast_data.create_key('rec.hits',
hits_by_det[det_name
][pulse_mask],\n",
" cur_fast_data.create_key('rec.hits',
cur_data['hits'
][pulse_mask],\n",
" chunks=tuple(chunks_hits), **dataset_kwargs)\n",
" \n",
" cur_fast_data.create_index(raw=pulse_counts[train_mask], rec=pulse_counts[train_mask])\n",
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment