Skip to content
Snippets Groups Projects
Commit fa21baa5 authored by Egor Sobolev's avatar Egor Sobolev
Browse files

Plot random images by one from a train in dynamic ff correction notebook

parent 7435e283
No related branches found
No related tags found
1 merge request!1014[Fix][DynamicFF] Follow up initial development
%% Cell type:markdown id: tags:
# Dynamic Flat-field Offline Correction
Author: Egor Sobolev
Offline dynamic flat-field correction
%% Cell type:code id: tags:
``` python
in_folder = "/gpfs/exfel/exp/SPB/202430/p900425/raw" # input folder, required
out_folder ="/gpfs/exfel/exp/SPB/202430/p900425/scratch/proc/r0003" # output folder, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
run = 3 # which run to read data from, required
# Data files parameters.
karabo_da = ['-1'] # data aggregators
karabo_id = "SPB_MIC_HPVX2" # karabo prefix of Shimadzu HPV-X2 devices
# Database access parameters.
cal_db_interface = "tcp://max-exfl-cal001:8021" # Unused, calibration DB interface to use
cal_db_timeout = 30000 # Unused, calibration DB timeout
creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HH:MM:SS.00 e.g. 2019-07-04 11:02:41.00
# Correction parameters
n_components = 20 # number of principal components of flat-field to use in correction
downsample_factors = [1, 1] # list of downsample factors for each image dimention (y, x)
num_proc = 32 # number of processes running correction in parallel
```
%% Cell type:code id: tags:
``` python
import os
import h5py
import warnings
from logging import warning
warnings.filterwarnings('ignore')
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown
from datetime import datetime
from extra_data import RunDirectory, by_id
%matplotlib inline
from cal_tools.step_timing import StepTimer
from cal_tools.files import sequence_trains, DataFile
from cal_tools.tools import calcat_creation_time
from cal_tools.restful_config import calibration_client, extra_calibration_client
from cal_tools.calcat_interface2 import CalibrationData
from cal_tools.shimadzu import ShimadzuHPVX2
from dynflatfield import (
DynamicFlatFieldCorrectionCython as DynamicFlatFieldCorrection,
FlatFieldCorrectionFileProcessor
)
from dynflatfield.draw import plot_images, plot_camera_image
```
%% Cell type:code id: tags:
``` python
creation_time = calcat_creation_time(in_folder, run, creation_time)
print(f"Creation time is {creation_time}")
extra_calibration_client() # Configure CalibrationData API.
cc = calibration_client()
pdus = cc.get_all_phy_det_units_from_detector({
"detector_identifier": karabo_id,
"pdu_snapshot_at": creation_time,
})
if not pdus["success"]:
raise ValueError("Failed to retrieve PDUs")
detector_info = pdus['data'][0]['detector']
detector = ShimadzuHPVX2(detector_info["source_name_pattern"])
index_group = detector.image_index_group
image_key = detector.image_key
print(f"Instrument {detector.instrument}")
print(f"Detector in use is {karabo_id}")
modules = {}
for pdu in pdus["data"]:
db_module = pdu["physical_name"]
module = pdu["module_number"]
da = pdu["karabo_da"]
if karabo_da[0] != "-1" and da not in karabo_da:
continue
instrument_source_name = detector.instrument_source(module)
corrected_source_name = detector.corrected_source(module)
print('-', da, db_module, module, instrument_source_name)
modules[da] = dict(
db_module=db_module,
module=module,
raw_source_name=instrument_source_name,
corrected_source_name=corrected_source_name,
)
step_timer = StepTimer()
```
%% Cell type:markdown id: tags:
# Calibration constants
%% Cell type:code id: tags:
``` python
step_timer.start()
dc = RunDirectory(f"{in_folder}/r{run:04d}")
conditions = detector.conditions(dc)
caldata = CalibrationData.from_condition(
conditions, 'SPB_MIC_HPVX2', event_at=creation_time)
aggregators = {}
corrections = {}
for da in modules:
file_da, _, _ = da.partition('/')
aggregators.setdefault(file_da, []).append(da)
try:
dark = caldata["Offset", da].ndarray()
flat = caldata["DynamicFF", da].ndarray()
components = flat[1:][:n_components]
flat = flat[0]
dffc = DynamicFlatFieldCorrection.from_constants(
dark, flat, components, downsample_factors)
corrections[da] = dffc
except (KeyError, FileNotFoundError):
# missed constants are reported later
pass
step_timer.done_step("Load calibration constants")
```
%% Cell type:markdown id: tags:
# Correction
%% Cell type:code id: tags:
``` python
# Output Folder Creation:
os.makedirs(out_folder, exist_ok=True)
report = []
report = {}
for file_da, file_modules in aggregators.items():
dc = RunDirectory(f"{in_folder}/r{run:04d}", f"RAW-R{run:04d}-{file_da}-S*.h5")
# build train IDs
train_ids = set()
process_modules = []
for da in file_modules:
instrument_source = modules[da]["raw_source_name"]
if instrument_source not in dc.all_sources:
print(f"Source {instrument_source} for module {da} is missed")
continue
if da not in corrections:
warning(f"Constants are not found for module {da}. "
"The module will not calibrated")
continue
keydata = dc[instrument_source][image_key].drop_empty_trains()
train_ids.update(keydata.train_ids)
process_modules.append(da)
train_ids = np.array(sorted(train_ids))
ts = dc.select_trains(by_id[train_ids]).train_timestamps().astype(np.uint64)
# correct and write sequence files
seq_report = {}
for seq_id, train_mask in sequence_trains(train_ids, 200):
step_timer.start()
print('* sequence', seq_id)
seq_train_ids = train_ids[train_mask]
seq_timestamps = ts[train_mask]
dc_seq = dc.select_trains(by_id[seq_train_ids])
ntrains = len(seq_train_ids)
# create output file
channels = [f"{modules[da]['corrected_source_name']}/{index_group}"
for da in process_modules]
f = DataFile.from_details(out_folder, file_da, run, seq_id)
f.create_metadata(like=dc, instrument_channels=channels)
f.create_index(seq_train_ids, timestamps=seq_timestamps)
# create file structure
seq_report = {}
file_datasets = {}
for da in process_modules:
instrument_source = modules[da]["raw_source_name"]
keydata = dc_seq[instrument_source][image_key].drop_empty_trains()
count = keydata.data_counts(labelled=False)
i = np.flatnonzero(count)
raw_images = keydata.select_trains(np.s_[i]).ndarray()
# not pulse resolved
shape = keydata.shape
count = np.in1d(seq_train_ids, keydata.train_ids).astype(int)
corrected_source = modules[da]["corrected_source_name"]
src = f.create_instrument_source(corrected_source)
src.create_index(**{index_group: count})
# create key for images
ds_data = src.create_key(image_key, shape=shape, dtype=np.float32)
module_datasets = {image_key: ds_data}
# create keys for image parameters
for key in detector.copy_keys:
keydata = dc_seq[instrument_source][key].drop_empty_trains()
module_datasets[key] = (keydata, src.create_key(
key, shape=keydata.shape, dtype=keydata.dtype))
file_datasets[da] = module_datasets
step_timer.done_step("Create output file")
# correct and write data to file
for da in process_modules:
step_timer.start()
dc_seq = dc.select_trains(by_id[seq_train_ids])
dffc = corrections[da]
instrument_source = modules[da]["raw_source_name"]
proc = FlatFieldCorrectionFileProcessor(dffc, num_proc, instrument_source, image_key)
proc.start_workers()
proc.run(dc_seq)
proc.join_workers()
# not pulse resolved
corrected_images = np.stack(proc.rdr.results, 0)
file_datasets[da][image_key][:] = corrected_images
# copy image parameters
for key in detector.copy_keys:
keydata, ds = file_datasets[da][key]
ds[:] = keydata.ndarray()
seq_report[da] = (raw_images[0, 0], corrected_images[:20, 0])
rep_rix = np.random.randint(0, raw_images.shape[1])
rep_cix = np.random.randint(0, corrected_images.shape[1],
size=min(20, corrected_images.shape[0]))
da_report = seq_report.setdefault(da, [])
da_report.append((raw_images[0, rep_rix],
corrected_images[range(len(rep_cix)), rep_cix]))
step_timer.done_step("Correct flat-field")
f.close()
report.append(seq_report)
report.update(seq_report)
```
%% Cell type:code id: tags:
``` python
step_timer.start()
if report:
for da, (raw_image, corrected_images) in report[0].items():
for da, da_report in report.items():
if len(da_report) > 0:
raw_images, corrected_images = zip(*da_report)
raw_images = np.stack(raw_images)
corrected_images = np.concatenate(corrected_images, axis=0)
else:
raw_images, corrected_images = da_report
raw_images = raw_images[None, ...]
source = modules[da]["raw_source_name"]
display(Markdown(f"## {source}"))
display(Markdown("### The first raw image"))
plot_camera_image(raw_images[0, 0])
display(Markdown("### The random raw image from the first train"))
plot_camera_image(raw_images[0])
plt.show()
display(Markdown("### The first corrected image"))
display(Markdown("### The random corrected image from the first train"))
plot_camera_image(corrected_images[0])
plt.show()
min_images = 5
if corrected_images.shape[0] < min_images:
# Update corrected_images to avoid less axes
# array dimension than expected in plot_images.
corrected_images = np.concatenate(
[
corrected_images,
np.full(
(min_images - corrected_images.shape[0], *corrected_images.shape[1:]),
fill_value=np.nan)])
display(Markdown("### The first corrected images in the trains (up to 20)"))
display(Markdown("### The random corrected images by one from a train (up to 20 first trains)"))
plot_images(corrected_images, figsize=(13, 8))
plt.show()
step_timer.done_step("Draw images")
```
%% Cell type:code id: tags:
``` python
print(f"Total processing time {step_timer.timespan():.01f} s")
step_timer.print_summary()
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment