Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • calibration/pycalibration
1 result
Show changes
Commits on Source (4)
Showing with 3202 additions and 1468 deletions
......@@ -624,7 +624,7 @@ class AgipdCorrections:
# slopeFF = slopeFFpix/avarege(slopeFFpix)
# To apply them we have to / not *
if self.corr_bools.get("xray_corr"):
data /= self.xray_cor[module_idx]
data /= self.xray_cor[module_idx][cellid, ...]
# use sharedmem raw_data and t0_rgain
# after calculating it while offset correcting.
......@@ -818,7 +818,7 @@ class AgipdCorrections:
uq, fidxv, cntsv = np.unique(trains, return_index=True,
return_counts=True)
# Validate calculated CORR INDEX contents by checking
# Validate calculated CORR INDEX contents by checking
# difference between trainId stored in RAW data and trains from
train_diff = np.isin(np.array(infile["/INDEX/trainId"]), uq,
invert=True)
......@@ -905,12 +905,12 @@ class AgipdCorrections:
exists of the current AGIPD instances.
Relative gain is derived both from pulse capacitor as well as low
intensity flat field data, information from flat field data is
needed to 'calibrate' pulse capacitor data, if there is no
intensity flat field data, information from flat field data is
needed to 'calibrate' pulse capacitor data, if there is no
available FF data, relative gain for High Gain stage is set to 1:
* Relative gain for High gain stage - from the FF data we get
the relative slopes of a given pixel and memory cells with
* Relative gain for High gain stage - from the FF data we get
the relative slopes of a given pixel and memory cells with
respect to all memory cells and all pixels in the module,
Please note: Current slopesFF avaialble in calibibration
constants are created per pixel only, not per memory cell:
......@@ -923,9 +923,9 @@ class AgipdCorrections:
between high and medium gain using slope information from
fits to the linear part of high and medium gain:
rfpc_high_medium = m_h/m_m
rfpc_high_medium = m_h/m_m
where m_h and m_m is the medium gain slope of given memory cells
where m_h and m_m is the medium gain slope of given memory cells
and pixel and m_h is the high gain slope as above
rel_gain_medium = rel_high_gain * rfpc_high_medium
......@@ -954,32 +954,16 @@ class AgipdCorrections:
if self.corr_bools.get("xray_corr"):
bpixels |= cons_data["BadPixelsFF"].astype(np.uint32)[..., :bpixels.shape[2], None] # noqa
slopesFF = np.squeeze(cons_data["SlopesFF"])
slopesFF = cons_data["SlopesFF"]
if len(slopesFF.shape) == 4:
slopesFF = slopesFF[..., 0]
# first 32 cells are known to behave differently so if we can avoid
# them
# when calculating the mean X-ray derived gain slope for each pixel
if slopesFF.shape[2] > 32:
xray_cor = np.nanmedian(
slopesFF[..., 32:min(96, self.max_cells)], axis=2)
elif slopesFF.shape[2] > 2:
xray_cor = np.nanmedian(
slopesFF[..., :min(96, self.max_cells)], axis=2)
else:
xray_cor = np.squeeze(slopesFF[..., 0])
# Memory cell resolved xray_cor correction
xray_cor = slopesFF # (128, 512, mem_cells)
# relative X-ray correction is normalized by the median
# of all pixels
# TODO: A check is required to know why it is again divided by
# median. If we have relative slopes in the constants
# and (we have!)
# xray cor = (slopeFF/avarege_slopeFF)/avarege_slopeFF.
# It didn't not make sense and was removed.
# xray_cor /= np.nanmedian(xray_cor)
xray_cor /= np.nanmedian(xray_cor)
self.xray_cor[module_idx][...] = xray_cor.transpose()[...]
......@@ -1041,13 +1025,19 @@ class AgipdCorrections:
# ration between HG and MG per pixel per mem cell used
# for rel gain calculation
frac_high_med_pix = pc_high_m / pc_med_m
# avarage ration between HG and MG as a function of
# avarage ration between HG and MG as a function of
# mem cell (needed for bls_stripes)
# TODO: Per pixel would be more optimal correction
frac_high_med = pc_high_med / pc_med_med
# calculate additional medium-gain offset
md_additional_offset = pc_high_l - pc_med_l * pc_high_m / pc_med_m
# Calculate relative gain. If FF constants are available,
# use them for high gain
# if not rel_gain is calculated using PC data only
# if self.corr_bools.get("xray_corr"):
# rel_gain[..., :self.max_cells, 0] /= xray_corr
# PC data should be 'calibrated with X-ray data,
# if it is not done, it is better to use 1 instead of bias
# the results with PC arteffacts.
......@@ -1078,17 +1068,35 @@ class AgipdCorrections:
dname = device.device_name
cons_data = dict()
when = dict()
for cname, mdata in const_yaml[dname].items():
when[cname] = mdata["creation-time"]
if when[cname]:
cf = h5py.File(mdata["file-path"], "r")
cons_data[cname] = np.copy(cf[f"{dname}/{cname}/0/data"])
cf.close()
# This path is only used when testing new flat fields from
# file during development: it takes ages to test using all
# cells. Consequently, the shape needs to be fixed when less
# cells are used.
with h5py.File(mdata["file-path"], "r") as cf:
cons_data[cname] = np.copy(cf[f"{dname}/{cname}/0/data"])
shape = cons_data[cname].shape # (128, 512, mem_cells)
extra_dims = shape[:2] + (self.max_cells-shape[2], )
if extra_dims[-1] != 0 and cname == "BadPixelsFF":
extra_temp = np.zeros(extra_dims, dtype=np.int32)
cons_data[cname] = np.concatenate(
(cons_data[cname], extra_temp), axis=2)
print('An extra dimension was added to the constants '
'for the benefit of BadPixelsFF')
if extra_dims[-1] != 0 and cname == "SlopesFF":
extra_temp = np.ones(extra_dims, dtype=np.float32)
cons_data[cname] = np.concatenate(
(cons_data[cname], extra_temp), axis=2)
print('An extra dimension was added to the constants '
'for the benefit of SlopesFF')
else:
# Create empty constant using the list elements
cons_data[cname] = \
getattr(np, mdata["file-path"][0])(mdata["file-path"][1])
cons_data[cname] = getattr(np, mdata["file-path"][0])(mdata["file-path"][1]) # noqa
self.init_constants(cons_data, module_idx)
return when
......@@ -1191,7 +1199,7 @@ class AgipdCorrections:
dtype='f4')
self.mask[module_idx] = sharedmem.empty(constant_shape, dtype='i4')
self.xray_cor[module_idx] = sharedmem.empty(constant_shape[2:],
self.xray_cor[module_idx] = sharedmem.empty(constant_shape[1:],
dtype='f4')
def allocate_images(self, shape, n_cores_files):
......
......@@ -43,7 +43,7 @@ def assemble_constant_dict(corr_bools, pc_bools, memory_cells, bias_voltage,
const_dict = {
"Offset": ["zeros", (128, 512, memory_cells, 3), darkcond],
"Noise": ["zeros", (128, 512, memory_cells, 3), darkcond],
"ThresholdsDark": ["ones", (128, 512, memory_cells, 2), darkcond],
"ThresholdsDark": ["ones", (128, 512, memory_cells, 5), darkcond],
"BadPixelsDark": ["zeros", (128, 512, memory_cells, 3), darkcond],
}
......
from typing import Any, Dict, List, Optional, Tuple
from iminuit import Minuit
import numpy as np
from cal_tools.enums import BadPixelsFF
def any_in(mask: np.ndarray, bits: int) -> bool:
return mask.astype(np.uint) & bits > 0
def gaussian(x: np.ndarray, norm: int = 1, mean: int = 0, sigma: int = 1) -> float: # noqa
"""
Return value of Gaussian function
:param x: Argument (float of 1D array) of Gaussian function
:param norm: Normalization of Gaussian function
:param mean: Mean parameter
:param sigma: Sigma parameter
:return: Value of gaussian function.
"""
return norm * np.exp(-1 / 2 * ((x - mean) / sigma) ** 2) / (sigma * np.sqrt(2 * np.pi)) # noqa
def gaussian_sum(x: np.ndarray, ng: int = 4, *p: Tuple[Any]) -> float:
"""Sum of ng Gaussian functions
:param x: Argument (float of 1D array) of the function
:param ng: Number of Gaussian functions
:param p: List of parameters (norm1,mean1,sigma1,norm2,mean2,sigma2,...)
"""
r = 0.
for i in range(ng):
r += gaussian(x, *p[i * 3:(i + 1) * 3])
return r
def get_statistical_parameters(x: np.ndarray,
y: np.ndarray,
x_range: List) -> Tuple[np.uint64, np.float64, np.float64, np.ndarray]: # noqa
"""Return statistical parameters of selected part of a histogram.
:param x: Center of bins of the histogram
:param y: Value of bins of the histogram
:param x_range: x range to be considered
:return: Sum of histogram, Mean value, Standard deviation,
List of selected bins
"""
# TODO: Check if wq.median works better than mean
sel = (x >= x_range[0]) & (x < x_range[1])
h_sum = np.sum(y[sel])
h_norm = y[sel] / h_sum
h_mean = np.sum(h_norm * x[sel])
h_sqr = (x[sel] - h_mean) ** 2
h_std = np.sqrt(np.sum(h_norm * h_sqr))
return h_sum, h_mean, h_std, sel
def get_starting_parameters(xe: np.ndarray,
ye: np.ndarray,
limits: np.ndarray,
n_peaks: int = 3,
f_lim: int = 2) -> Tuple[Dict[str, Any], List[Tuple]]: # noqa
"""
Estimate starting parameters for Gaussian fit of several peaks.
:param xe: Center of bins of the histogram
:param ye: Value of bins of the histogram
:param limits: Position of each peak ((left1, right1),
(left2, right2), ...) to be considered.
:param n_peaks: Number of peaks
:param f_lim: Limits in units of standard deviation to consider
"""
parameters = {}
shapes = []
for peak in range(n_peaks):
n, m, rms, idx = get_statistical_parameters(xe, ye, limits[peak])
limits2 = [m - f_lim * rms, m + f_lim * rms]
n, m, rms, idx = get_statistical_parameters(xe, ye, limits2)
shapes.append((n, m, rms, idx))
parameters.update({f'g{peak}sigma': rms,
f'g{peak}n': float(n),
f'g{peak}mean': m})
return parameters, shapes
def fit_n_peaks(x: np.ndarray,
y: np.ndarray,
pars: Dict[str, Any],
x_range: Tuple[float, float],
do_minos: Optional[bool] = False,
n_peaks: Optional[int] = 4,
fix_d01: Optional[bool] = True) -> Minuit:
"""
Fit histogram with n-Gaussian function.
:param x: Center of bins of the histogram
:param y: Value of bins of the histogram
:param pars: Dictionary of initial parameters for fitting
:param x_range: x Range to be considered for the fitting
:param do_minos: Run Minos if True
:param n_peaks: Number of Gaussian peaks to fit (min 2, max 4)
:param fix_d01: Fix position of peaks to the distance between noise and
first photon peak.
:return: minuit object
"""
sel = (x >= x_range[0]) & (x < x_range[1])
# Square of bin errors
yrr2 = np.copy(y[sel])
yrr2[yrr2 == 0] = 1 # bins with zero events have error=1
if fix_d01:
pars['fix_g2mean'] = True
pars['fix_g3mean'] = True
if n_peaks < 4:
pars['g3n'] = 0
pars['fix_g3n'] = True
pars['g3sigma'] = 1
pars['fix_g3sigma'] = True
pars['fix_g3mean'] = True
if n_peaks < 3:
pars['g2n'] = 0
pars['fix_g2n'] = True
pars['g2sigma'] = 1
pars['fix_g2sigma'] = True
pars['fix_g2mean'] = True
def chi2_f(g0n, g0mean, g0sigma,
g1n, g1mean, g1sigma,
g2n, g2mean, g2sigma,
g3n, g3mean, g3sigma, ):
d01 = (g1mean - g0mean)
if 'fix_g2mean' in pars and pars['fix_g2mean']:
g2mean = g0mean + d01 * 2
if 'fix_g3mean' in pars and pars['fix_g3mean']:
g3mean = g0mean + d01 * 3
if g3n == 0:
n_peaks = 3
elif g2n == 0:
n_peaks = 2
else:
n_peaks = 4
yt = gaussian_sum(x[sel], n_peaks,
g0n, g0mean, g0sigma,
g1n, g1mean, g1sigma,
g2n, g2mean, g2sigma,
g3n, g3mean, g3sigma)
return np.nansum((yt - y[sel]) ** 2 / yrr2)
minuit = Minuit(chi2_f, **pars, pedantic=False)
minuit.migrad()
if do_minos:
if minuit.get_fmin().is_valid:
minuit.minos()
return minuit
def set_par_limits(pars: Dict[str, Any],
peak_range: np.ndarray,
peak_norm_range: np.ndarray,
peak_width_range: np.ndarray,
n_peaks: Optional[int] = 4):
"""
Set limits on initial fit parameters based on given values
:param pars: Dictionary of initial fit parameters
:param peak_range: Limits on peak positions
:param peak_norm_range: Limits on normalization of Gaussian peaks
:param peak_width_range: Limits on width of Gaussian peaks
:param n_peaks: Number of Gaussian peaks
"""
for peak in range(n_peaks):
pars.update({f'limit_g{peak}n': peak_norm_range[peak],
f'limit_g{peak}mean': peak_range[peak],
f'limit_g{peak}sigma': peak_width_range[peak],
})
def get_mask(fit_summary: Dict[str, Any],
peak_lim: List,
d0_lim: List,
chi2_lim: List,
peak_width_lim: np.array) -> int:
"""
Calculate Bad pixels mask based on fit results and given limits
:param fit_summary: Dictionary of the fit output from Multi-Gaussian fit
:param peak_lim: Limits on noise peak position
:param d0_lim: Limits on distance between noise and first photon peak
:param chi2_lim: Limits on reduced chi^2 value
:param peak_width_lim: Limits on noise peak width
:return: Bad pixel mask
"""
if not fit_summary['is_valid']:
return BadPixelsFF.FIT_FAILED.value
m0 = fit_summary['g0mean']
s0 = fit_summary['g0sigma']
s1 = fit_summary['g1sigma']
s2 = fit_summary['g2sigma']
chi2_ndof = fit_summary['chi2_ndof']
d01 = fit_summary['g1mean'] - m0
mask = 0
if not fit_summary['is_valid']:
mask |= BadPixelsFF.FIT_FAILED.value
if not fit_summary['has_accurate_covar']:
mask |= BadPixelsFF.ACCURATE_COVAR.value
if not peak_lim[0] <= m0 <= peak_lim[1]:
mask |= BadPixelsFF.NOISE_PEAK_THRESHOLD.value
if not d0_lim[0] <= d01 <= d0_lim[1]:
mask |= BadPixelsFF.GAIN_THRESHOLD.value
if not chi2_lim[0] <= chi2_ndof <= chi2_lim[1]:
mask |= BadPixelsFF.CHI2_THRESHOLD.value
width_lim = peak_width_lim[0] * s0
inside_s1 = width_lim[0] <= s1 <= width_lim[1]
width_lim = peak_width_lim[1] * s0
inside_s2 = width_lim[0] <= s2 <= width_lim[1]
if not inside_s1 and inside_s2:
mask |= BadPixelsFF.PEAK_WIDTH_THRESHOLD.value
return mask
......@@ -28,6 +28,21 @@ class BadPixels(Enum):
NON_LIN_RESPONSE_REGION = 0b100000000000000000000 # bit 21
class BadPixelsFF(Enum):
""" The SLopesFF Bad Pixel Encoding
"""
FIT_FAILED = 0b000000000000000000001 # bit 1
CHI2_THRESHOLD = 0b000000000000000000010 # bit 2
NOISE_PEAK_THRESHOLD = 0b000000000000000000100 # bit 3
GAIN_THRESHOLD = 0b000000000000000001000 # bit 4
PEAK_WIDTH_THRESHOLD = 0b000000000000000010000 # bit 5
ACCURATE_COVAR = 0b000000000000000100000 # bit 6
BAD_DARK = 0b000000000000001000000 # bit 6
NO_ENTRY = 0b000000000000010000000 # bit 7
GAIN_DEVIATION = 0b000000000000100000000 # bit 8
class SnowResolution(Enum):
""" An Enum specifying how to resolve snowy pixels
"""
......
......@@ -264,13 +264,15 @@ def get_dir_creation_date(directory: str, run: int,
ntries = 100
while ntries > 0:
try:
dates = []
for f in directory.glob('*.h5'):
with h5py.File(f, 'r') as fin:
cdate = fin['METADATA/creationDate'][0].decode()
cdate = datetime.datetime.strptime(cdate, "%Y%m%dT%H%M%SZ")
dates.append(cdate)
return min(dates)
rfiles = list(directory.glob('*.h5'))
rfiles.sort(key=path.getmtime)
# get creation time for oldest file,
# as creation time between run files
# should be different only within few seconds
with h5py.File(rfiles[0], 'r') as fin:
cdate = fin['METADATA/creationDate'][0].decode()
cdate = datetime.datetime.strptime(cdate, "%Y%m%dT%H%M%SZ")
return cdate
except (IOError, ValueError):
ntries -= 1
except KeyError: # The files are here, but it's an older dataset
......
%% Cell type:markdown id: tags:
# AGIPD Offline Correction #
Author: European XFEL Detector Group, Version: 2.0
Offline Calibration for the AGIPD Detector
%% Cell type:code id: tags:
``` python
in_folder = "/gpfs/exfel/exp/HED/202031/p900174/raw" # the folder to read data from, required
out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/hibef_agipd2" # the folder to output to, required
sequences = [-1] # sequences to correct, set to -1 for all, range allowed
modules = [-1] # modules to correct, set to -1 for all, range allowed
run = 155 # runs to process, required
karabo_id = "HED_DET_AGIPD500K2G" # karabo karabo_id
karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators
receiver_id = "{}CH0" # inset for receiver devices
path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data
h5path = 'INSTRUMENT/{}/DET/{}:xtdf/' # path in the HDF5 file to images
h5path_idx = 'INDEX/{}/DET/{}:xtdf/' # path in the HDF5 file to images
h5path_ctrl = '/CONTROL/{}/MDL/FPGA_COMP' # path to control information
karabo_id_control = "HED_EXP_AGIPD500K2G" # karabo-id for control device
karabo_da_control = 'AGIPD500K2G00' # karabo DA for control infromation
slopes_ff_from_files = "" # Path to locally stored SlopesFF and BadPixelsFF constants
use_dir_creation_date = True # use the creation data of the input dir for database queries
cal_db_interface = "tcp://max-exfl016:8015#8045" # the database interface to use
cal_db_timeout = 30000 # in milli seconds
creation_date_offset = "00:00:00" # add an offset to creation date, e.g. to get different constants
max_cells = 0 # number of memory cells used, set to 0 to automatically infer
bias_voltage = 300 # Bias voltage
acq_rate = 0. # the detector acquisition rate, use 0 to try to auto-determine
gain_setting = 0.1 # the gain setting, use 0.1 to try to auto-determine
photon_energy = 9.2 # photon energy in keV
overwrite = True # set to True if existing data should be overwritten
max_pulses = [0, 500, 1] # range list [st, end, step] of maximum pulse indices within a train. 3 allowed maximum list input elements.
mem_cells_db = 0 # set to a value different than 0 to use this value for DB queries
cell_id_preview = 1 # cell Id used for preview in single-shot plots
# Correction parameters
blc_noise_threshold = 5000 # above this mean signal intensity now baseline correction via noise is attempted
cm_dark_fraction = 0.66 # threshold for fraction of empty pixels to consider module enough dark to perform CM correction
cm_dark_range = [-50.,30] # range for signal value ADU for pixel to be consider as a dark pixel
cm_n_itr = 4 # number of iterations for common mode correction
hg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel to high gain
mg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel from low to medium gain
noisy_adc_threshold = 0.25 # threshold to mask complete adc
# Correction Booleans
only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.
rel_gain = False # do relative gain correction based on PC data
xray_gain = False # do relative gain correction based on xray data
blc_noise = False # if set, baseline correction via noise peak location is attempted
blc_stripes = False # if set, baseline corrected via stripes
blc_hmatch = False # if set, base line correction via histogram matching is attempted
match_asics = False # if set, inner ASIC borders are matched to the same signal level
adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value
zero_nans = False # set NaN values in corrected data to 0
zero_orange = False # set to 0 very negative and very large values in corrected data
blc_set_min = False # Shift to 0 negative medium gain pixels after offset corr
corr_asic_diag = False # if set, diagonal drop offs on ASICs are correted
force_hg_if_below = False # set high gain if mg offset subtracted value is below hg_hard_threshold
force_mg_if_below = False # set medium gain if mg offset subtracted value is below mg_hard_threshold
mask_noisy_adc = False # Mask entire ADC if they are noise above a relative threshold
common_mode = False # Common mode correction
melt_snow = False # Identify (and optionally interpolate) 'snowy' pixels
mask_zero_std = False # Mask pixels with zero standard deviation across train
low_medium_gap = False # 5 sigma separation in thresholding between low and medium gain
# Paralellization parameters
chunk_size = 1000 # Size of chunk for image-weise correction
chunk_size_idim = 1 # chunking size of imaging dimension, adjust if user software is sensitive to this.
n_cores_correct = 16 # Number of chunks to be processed in parallel
n_cores_files = 4 # Number of files to be processed in parallel
sequences_per_node = 2 # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel
def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):
from xfel_calibrate.calibrate import balance_sequences as bs
return bs(in_folder, run, sequences, sequences_per_node, karabo_da)
```
%% Cell type:code id: tags:
``` python
import copy
from datetime import timedelta
from dateutil import parser
import gc
import glob
import itertools
from IPython.display import HTML, display, Markdown, Latex
import math
from multiprocessing import Pool
import os
import re
import sys
import traceback
from time import time, sleep, perf_counter
import tabulate
import warnings
warnings.filterwarnings('ignore')
import yaml
from extra_geom import AGIPD_1MGeometry, AGIPD_500K2GGeometry
from extra_data import RunDirectory, stack_detector_data
from iCalibrationDB import Detectors
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from matplotlib.colors import LogNorm
from matplotlib import cm as colormap
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use("agg")
%matplotlib inline
import numpy as np
import seaborn as sns
sns.set()
sns.set_context("paper", font_scale=1.4)
sns.set_style("ticks")
from cal_tools.agipdlib import (AgipdCorrections, get_acq_rate,
get_gain_setting, get_num_cells)
from cal_tools.cython import agipdalgs as calgs
from cal_tools.ana_tools import get_range
from cal_tools.enums import BadPixels
from cal_tools.tools import get_dir_creation_date, map_modules_from_folder
from cal_tools.step_timing import StepTimer
import seaborn as sns
sns.set()
sns.set_context("paper", font_scale=1.4)
sns.set_style("ticks")
```
%% Cell type:markdown id: tags:
## Evaluated parameters ##
%% Cell type:code id: tags:
``` python
# Fill dictionaries comprising bools and arguments for correction and data analysis
# Here the herarichy and dependability for correction booleans are defined
corr_bools = {}
# offset is at the bottom of AGIPD correction pyramid.
corr_bools["only_offset"] = only_offset
# Dont apply any corrections if only_offset is requested
if not only_offset:
corr_bools["adjust_mg_baseline"] = adjust_mg_baseline
corr_bools["rel_gain"] = rel_gain
corr_bools["xray_corr"] = xray_gain
corr_bools["blc_noise"] = blc_noise
corr_bools["blc_stripes"] = blc_stripes
corr_bools["blc_hmatch"] = blc_hmatch
corr_bools["blc_set_min"] = blc_set_min
corr_bools["match_asics"] = match_asics
corr_bools["corr_asic_diag"] = corr_asic_diag
corr_bools["zero_nans"] = zero_nans
corr_bools["zero_orange"] = zero_orange
corr_bools["mask_noisy_adc"] = mask_noisy_adc
corr_bools["force_hg_if_below"] = force_hg_if_below
corr_bools["force_mg_if_below"] = force_mg_if_below
corr_bools["common_mode"] = common_mode
corr_bools["melt_snow"] = melt_snow
corr_bools["mask_zero_std"] = mask_zero_std
corr_bools["low_medium_gap"] = low_medium_gap
```
%% Cell type:code id: tags:
``` python
if in_folder[-1] == "/":
in_folder = in_folder[:-1]
if sequences[0] == -1:
sequences = None
control_fname = f'{in_folder}/r{run:04d}/RAW-R{run:04d}-{karabo_da_control}-S00000.h5'
h5path_ctrl = h5path_ctrl.format(karabo_id_control)
h5path = h5path.format(karabo_id, receiver_id)
h5path_idx = h5path_idx.format(karabo_id, receiver_id)
print(f'Path to control file {control_fname}')
```
%% Cell type:code id: tags:
``` python
# Create output folder
os.makedirs(out_folder, exist_ok=overwrite)
# Evaluate detector instance for mapping
instrument = karabo_id.split("_")[0]
if instrument == "SPB":
dinstance = "AGIPD1M1"
nmods = 16
elif instrument == "MID":
dinstance = "AGIPD1M2"
nmods = 16
# TODO: Remove DETLAB
elif instrument == "HED" or instrument == "DETLAB":
dinstance = "AGIPD500K"
nmods = 8
# Evaluate requested modules
if karabo_da[0] == '-1':
if modules[0] == -1:
modules = list(range(nmods))
karabo_da = ["AGIPD{:02d}".format(i) for i in modules]
else:
modules = [int(x[-2:]) for x in karabo_da]
def mod_name(modno):
return f"Q{modno // 4 + 1}M{modno % 4 + 1}"
print("Process modules: ", ', '.join(
[mod_name(x) for x in modules]))
print(f"Detector in use is {karabo_id}")
print(f"Instrument {instrument}")
print(f"Detector instance {dinstance}")
```
%% Cell type:code id: tags:
``` python
# Display Information about the selected pulses indices for correction.
pulses_lst = list(range(*max_pulses)) if not (len(max_pulses)==1 and max_pulses[0]==0) else max_pulses
try:
if len(pulses_lst) > 1:
print("A range of {} pulse indices is selected: from {} to {} with a step of {}"
.format(len(pulses_lst), pulses_lst[0] , pulses_lst[-1] + (pulses_lst[1] - pulses_lst[0]),
pulses_lst[1] - pulses_lst[0]))
else:
print("one pulse is selected: a pulse of idx {}".format(pulses_lst[0]))
except Exception as e:
raise ValueError('max_pulses input Error: {}'.format(e))
```
%% Cell type:code id: tags:
``` python
# set everything up filewise
mmf = map_modules_from_folder(in_folder, run, path_template,
karabo_da, sequences)
mapped_files, mod_ids, total_sequences, sequences_qm, _ = mmf
file_list = []
# ToDo: Split table over pages
print(f"Processing a total of {total_sequences} sequence files in chunks of {n_cores_files}")
table = []
ti = 0
for k, files in mapped_files.items():
i = 0
for f in list(files.queue):
file_list.append(f)
if i == 0:
table.append((ti, k, i, f))
else:
table.append((ti, "", i, f))
i += 1
ti += 1
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["#", "module", "# module", "file"])))
file_list = sorted(file_list, key=lambda name: name[-10:])
```
%% Cell type:code id: tags:
``` python
filename = file_list[0]
channel = int(re.findall(r".*-AGIPD([0-9]+)-.*", filename)[0])
# Evaluate number of memory cells
mem_cells = get_num_cells(filename, karabo_id, channel)
if mem_cells is None:
raise ValueError(f"No raw images found in {filename}")
mem_cells_db = mem_cells if mem_cells_db == 0 else mem_cells_db
max_cells = mem_cells if max_cells == 0 else max_cells
# Evaluate aquisition rate
if acq_rate == 0:
acq_rate = get_acq_rate((filename, karabo_id, channel))
print(f"Maximum memory cells to calibrate: {max_cells}")
```
%% Cell type:code id: tags:
``` python
# Evaluate creation time
creation_time = None
if use_dir_creation_date:
creation_time = get_dir_creation_date(in_folder, run)
offset = parser.parse(creation_date_offset)
delta = timedelta(hours=offset.hour,
minutes=offset.minute, seconds=offset.second)
creation_time += delta
# Evaluate gain setting
if gain_setting == 0.1:
if creation_time.replace(tzinfo=None) < parser.parse('2020-01-31'):
print("Set gain-setting to None for runs taken before 2020-01-31")
gain_setting = None
else:
try:
gain_setting = get_gain_setting(control_fname, h5path_ctrl)
except Exception as e:
print(f'ERROR: while reading gain setting from: \n{control_fname}')
print(e)
print("Set gain setting to 0")
gain_setting = 0
```
%% Cell type:code id: tags:
``` python
print(f"Using {creation_time} as creation time")
print(f"Operating conditions are:\n• Bias voltage: {bias_voltage}\n• Memory cells: {mem_cells_db}\n"
f"• Acquisition rate: {acq_rate}\n• Gain setting: {gain_setting}\n• Photon Energy: {photon_energy}\n")
```
%% Cell type:markdown id: tags:
## Data processing ##
%% Cell type:code id: tags:
``` python
agipd_corr = AgipdCorrections(max_cells, max_pulses,
h5_data_path=h5path,
h5_index_path=h5path_idx,
corr_bools=corr_bools)
agipd_corr.baseline_corr_noise_threshold = -blc_noise_threshold
agipd_corr.hg_hard_threshold = hg_hard_threshold
agipd_corr.mg_hard_threshold = mg_hard_threshold
agipd_corr.cm_dark_min = cm_dark_range[0]
agipd_corr.cm_dark_max = cm_dark_range[1]
agipd_corr.cm_dark_fraction = cm_dark_fraction
agipd_corr.cm_n_itr = cm_n_itr
agipd_corr.noisy_adc_threshold = noisy_adc_threshold
```
%% Cell type:code id: tags:
``` python
# Retrieve calibration constants to RAM
agipd_corr.allocate_constants(modules, (3, mem_cells_db, 512, 128))
const_yaml = None
if os.path.isfile(f'{out_folder}/retrieved_constants.yml'):
with open(f'{out_folder}/retrieved_constants.yml', "r") as f:
const_yaml = yaml.safe_load(f.read())
# retrive constants
def retrieve_constants(mod):
"""
Retrieve calibration constants and load them to shared memory
Metadata for constants is taken from yml file or retrieved from the DB
"""
device = getattr(getattr(Detectors, dinstance), mod_name(mod))
err = ''
try:
# check if there is a yaml file in out_folder that has the device constants.
if const_yaml and device.device_name in const_yaml:
when = agipd_corr.initialize_from_yaml(const_yaml, mod, device)
else:
when = agipd_corr.initialize_from_db(cal_db_interface, creation_time, mem_cells_db, bias_voltage,
photon_energy, gain_setting, acq_rate, mod, device, False)
except Exception as e:
err = f"Error: {e}\nError traceback: {traceback.format_exc()}"
when = None
return err, mod, when, device.device_name
ts = perf_counter()
with Pool(processes=len(modules)) as pool:
const_out = pool.map(retrieve_constants, modules)
print(f"Constants were loaded in {perf_counter()-ts:.01f}s")
```
%% Cell type:code id: tags:
``` python
# allocate memory for images and hists
n_images_max = max_cells*256
data_shape = (n_images_max, 512, 128)
agipd_corr.allocate_images(data_shape, n_cores_files)
```
%% Cell type:code id: tags:
``` python
def batches(l, batch_size):
"""Group a list into batches of (up to) batch_size elements"""
start = 0
while start < len(l):
yield l[start:start + batch_size]
start += batch_size
```
%% Cell type:code id: tags:
``` python
def imagewise_chunks(img_counts):
"""Break up the loaded data into chunks of up to chunk_size
Yields (file data slot, start index, stop index)
"""
for i_proc, n_img in enumerate(img_counts):
n_chunks = math.ceil(n_img / chunk_size)
for i in range(n_chunks):
yield i_proc, i * n_img // n_chunks, (i+1) * n_img // n_chunks
```
%% Cell type:code id: tags:
``` python
step_timer = StepTimer()
```
%% Cell type:code id: tags:
``` python
with Pool() as pool:
for file_batch in batches(file_list, n_cores_files):
# TODO: Move some printed output to logging or similar
print(f"Processing next {len(file_batch)} files:")
for file_name in file_batch:
print(" ", file_name)
step_timer.start()
img_counts = pool.starmap(agipd_corr.read_file, enumerate(file_batch))
step_timer.done_step('Loading data from files')
# Evaluate zero-data-std mask
pool.starmap(agipd_corr.mask_zero_std, itertools.product(
range(len(file_batch)), np.array_split(np.arange(agipd_corr.max_cells), n_cores_correct)
))
step_timer.done_step('Mask 0 std')
# Perform offset image-wise correction
pool.starmap(agipd_corr.offset_correction, imagewise_chunks(img_counts))
step_timer.done_step("Offset correction")
if blc_noise or blc_stripes or blc_hmatch:
# Perform image-wise correction
pool.starmap(agipd_corr.baseline_correction, imagewise_chunks(img_counts))
step_timer.done_step("Base-line shift correction")
if common_mode:
# Perform cross-file correction parallel over asics
pool.starmap(agipd_corr.cm_correction, itertools.product(
range(len(file_batch)), range(16) # 16 ASICs per module
))
step_timer.done_step("Common-mode correction")
# Perform image-wise correction
pool.starmap(agipd_corr.gain_correction, imagewise_chunks(img_counts))
step_timer.done_step("Image-wise correction")
# Save corrected data
pool.starmap(agipd_corr.write_file, [
(i_proc, file_name, os.path.join(out_folder, os.path.basename(file_name).replace("RAW", "CORR")))
for i_proc, file_name in enumerate(file_batch)
])
step_timer.done_step("Save")
```
%% Cell type:code id: tags:
``` python
print(f"Correction of {len(file_list)} files is finished")
print(f"Total processing time {step_timer.timespan():.01f} s")
print(f"Timing summary per batch of {n_cores_files} files:")
step_timer.print_summary()
```
%% Cell type:code id: tags:
``` python
# if there is a yml file that means a leading notebook got processed
# and the reporting would be generated from it.
fst_print = True
to_store = []
line = []
for i, (error, modno, when, mod_dev) in enumerate(const_out):
qm = mod_name(modno)
# expose errors while applying correction
if error:
print("Error: {}".format(error) )
if not const_yaml or mod_dev not in const_yaml:
if fst_print:
print("Constants are retrieved with creation time: ")
fst_print = False
line = [qm]
# If correction is crashed
if not error:
print(f"{qm}:")
for key, item in when.items():
if hasattr(item, 'strftime'):
item = item.strftime('%y-%m-%d %H:%M')
when[key] = item
print('{:.<12s}'.format(key), item)
# Store few time stamps if exists
# Add NA to keep array structure
for key in ['Offset', 'SlopesPC', 'SlopesFF']:
if when and key in when and when[key]:
line.append(when[key])
else:
if error is not None:
line.append('Err')
else:
line.append('NA')
if len(line) > 0:
to_store.append(line)
seq = sequences[0] if sequences else 0
if len(to_store) > 0:
with open(f"{out_folder}/retrieved_constants_s{seq}.yml","w") as fyml:
yaml.safe_dump({"time-summary": {f"S{seq}":to_store}}, fyml)
```
%% Cell type:code id: tags:
``` python
def do_3d_plot(data, edges, x_axis, y_axis):
fig = plt.figure(figsize=(10, 10))
ax = fig.gca(projection='3d')
# Make data.
X = edges[0][:-1]
Y = edges[1][:-1]
X, Y = np.meshgrid(X, Y)
Z = data.T
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=colormap.coolwarm,
linewidth=0, antialiased=False)
ax.set_xlabel(x_axis)
ax.set_ylabel(y_axis)
ax.set_zlabel("Counts")
def do_2d_plot(data, edges, y_axis, x_axis):
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
extent = [np.min(edges[1]), np.max(edges[1]),
np.min(edges[0]), np.max(edges[0])]
im = ax.imshow(data[::-1, :], extent=extent, aspect="auto",
norm=LogNorm(vmin=1, vmax=max(10, np.max(data))))
ax.set_xlabel(x_axis)
ax.set_ylabel(y_axis)
cb = fig.colorbar(im)
cb.set_label("Counts")
```
%% Cell type:code id: tags:
``` python
def get_trains_data(run_folder, source, include, tid=None, path='*/DET/*', modules=16, fillvalue=np.nan):
"""
Load single train for all module
:param run_folder: Path to folder with data
:param source: Data source to be loaded
:param include: Inset of file name to be considered
:param tid: Train Id to be loaded. First train is considered if None is given
:param path: Path to find image data inside h5 file
"""
run_data = RunDirectory(run_folder, include)
if tid:
tid, data = run_data.select('*/DET/*', source).train_from_id(tid)
return tid, stack_detector_data(train=data, data=source, fillvalue=fillvalue, modules=modules)
else:
for tid, data in run_data.select('*/DET/*', source).trains(require_all=True):
return tid, stack_detector_data(train=data, data=source, fillvalue=fillvalue, modules=modules)
return None, None
```
%% Cell type:code id: tags:
``` python
if dinstance == "AGIPD500K":
geom = AGIPD_500K2GGeometry.from_origin()
else:
geom = AGIPD_1MGeometry.from_quad_positions(quad_pos=[
(-525, 625),
(-550, -10),
(520, -160),
(542.5, 475),
])
```
%% Cell type:code id: tags:
``` python
include = '*S00000*' if sequences is None else f'*S{sequences[0]:05d}*'
tid, corrected = get_trains_data(f'{out_folder}/', 'image.data', include, modules=nmods)
_, gains = get_trains_data(f'{out_folder}/', 'image.gain', include, tid, modules=nmods)
_, mask = get_trains_data(f'{out_folder}/', 'image.mask', include, tid, modules=nmods)
_, blshift = get_trains_data(f'{out_folder}/', 'image.blShift', include, tid, modules=nmods)
_, cellId = get_trains_data(f'{out_folder}/', 'image.cellId', include, tid, modules=nmods)
_, pulseId = get_trains_data(f'{out_folder}/', 'image.pulseId', include, tid,
modules=nmods, fillvalue=0)
_, raw = get_trains_data(f'{in_folder}/r{run:04d}/', 'image.data', include, tid, modules=nmods)
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'## Preview and statistics for {gains.shape[0]} images of the train {tid} ##\n'))
```
%% Cell type:markdown id: tags:
### Signal vs. Analogue Gain ###
%% Cell type:code id: tags:
``` python
hist, bins_x, bins_y = calgs.histogram2d(raw[:,0,...].flatten().astype(np.float32),
raw[:,1,...].flatten().astype(np.float32),
bins=(100, 100),
range=[[4000, 8192], [4000, 8192]])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Analogue gain (ADU)")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Analogue gain (ADU)")
```
%% Cell type:markdown id: tags:
### Signal vs. Digitized Gain ###
The following plot shows plots signal vs. digitized gain
%% Cell type:code id: tags:
``` python
hist, bins_x, bins_y = calgs.histogram2d(corrected.flatten().astype(np.float32),
gains.flatten().astype(np.float32), bins=(100, 3),
range=[[-50, 8192], [0, 3]])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Gain bit value")
```
%% Cell type:code id: tags:
``` python
print(f"Gain statistics in %")
table = [[f'{gains[gains==0].size/gains.size*100:.02f}',
f'{gains[gains==1].size/gains.size*100:.03f}',
f'{gains[gains==2].size/gains.size*100:.03f}']]
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["High", "Medium", "Low"])))
```
%% Cell type:markdown id: tags:
### Intensity per Pulse ###
%% Cell type:code id: tags:
``` python
pulse_range = [np.min(pulseId[pulseId>=0]), np.max(pulseId[pulseId>=0])]
mean_data = np.nanmean(corrected, axis=(2, 3))
hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),
pulseId.flatten().astype(np.float32),
bins=(100, int(pulse_range[1])),
range=[[-50, 1000], pulse_range])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),
pulseId.flatten().astype(np.float32),
bins=(100, int(pulse_range[1])),
range=[[-50, 200000], pulse_range])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
```
%% Cell type:markdown id: tags:
### Baseline shift ###
Estimated base-line shift with respect to the total ADU counts of corrected image.
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
h = ax.hist(blshift.flatten(), bins=100, log=True)
_ = plt.xlabel('Baseline shift [ADU]')
_ = plt.ylabel('Counts')
_ = ax.grid()
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(10, 10))
corrected_ave = np.nansum(corrected, axis=(2, 3))
plt.scatter(corrected_ave.flatten()/10**6, blshift.flatten(), s=0.9)
plt.xlim(-1, 1000)
plt.grid()
plt.xlabel('Illuminated corrected [MADU] ')
_ = plt.ylabel('Estimated baseline shift [ADU]')
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Raw preview ###\n'))
display(Markdown(f'Mean over images of the RAW data\n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
data = np.mean(raw[:, 0, ...], axis=0)
vmin, vmax = get_range(data, 5)
ax = geom.plot_data_fast(data, ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'Single shot of the RAW data from cell {np.max(cellId[cell_id_preview])} \n'))
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(raw[cell_id_preview, 0, ...], 5)
ax = geom.plot_data_fast(raw[cell_id_preview, 0, ...], ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Corrected preview ###\n'))
display(Markdown(f'A single shot image from cell {np.max(cellId[cell_id_preview])} \n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected[cell_id_preview], 7, -50)
vmin = - 50
ax = geom.plot_data_fast(corrected[cell_id_preview], ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected[cell_id_preview], 5, -50)
nbins = np.int((vmax + 50) / 2)
h = ax.hist(corrected[cell_id_preview].flatten(),
bins=nbins, range=(-50, vmax),
histtype='stepfilled', log=True)
_ = plt.xlabel('[ADU]')
_ = plt.ylabel('Counts')
_ = ax.grid()
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Mean CORRECTED Preview ###\n'))
display(Markdown(f'A mean across one train \n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
data = np.mean(corrected, axis=0)
vmin, vmax = get_range(data, 7)
ax = geom.plot_data_fast(data, ax=ax, cmap="jet", vmin=-50, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected, 10, -100)
vmax = np.nanmax(corrected)
if vmax > 50000:
vmax=50000
nbins = np.int((vmax + 100) / 5)
h = ax.hist(corrected.flatten(), bins=nbins,
range=(-100, vmax), histtype='step', log=True, label = 'All')
_ = ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),
alpha=0.5, log=True, label='High gain', color='green')
_ = ax.hist(corrected[gains == 1].flatten(), bins=nbins, range=(-100, vmax),
alpha=0.5, log=True, label='Medium gain', color='red')
_ = ax.hist(corrected[gains == 2].flatten(), bins=nbins,
range=(-100, vmax), alpha=0.5, log=True, label='Low gain', color='yellow')
_ = ax.legend()
_ = ax.grid()
_ = plt.xlabel('[ADU]')
_ = plt.ylabel('Counts')
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Maximum GAIN Preview ###\n'))
display(Markdown(f'The per pixel maximum across one train for the digitized gain'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
ax = geom.plot_data_fast(np.max(gains, axis=0), ax=ax,
cmap="jet", vmin=-1, vmax=3)
```
%% Cell type:markdown id: tags:
## Bad Pixels ##
The mask contains dedicated entries for all pixels and memory cells as well as all three gains stages. Each mask entry is encoded in 32 bits as:
%% Cell type:code id: tags:
``` python
table = []
for item in BadPixels:
table.append((item.name, "{:016b}".format(item.value)))
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["Bad pixel type", "Bit mask"])))
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'### Single Shot Bad Pixels ### \n'))
display(Markdown(f'A single shot bad pixel map from cell {np.max(cellId[cell_id_preview])} \n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
ax = geom.plot_data_fast(np.log2(mask[cell_id_preview]), ax=ax, vmin=0, vmax=32, cmap="jet")
```
%% Cell type:markdown id: tags:
### Percentage of Bad Pixels across one train ###
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
ax = geom.plot_data_fast(np.mean(mask>0, axis=0),
vmin=0, ax=ax, vmax=1, cmap="jet")
```
%% Cell type:markdown id: tags:
### Percentage of Bad Pixels across one train. Only Dark Related ###
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
cm = np.copy(mask)
cm[cm > BadPixels.NO_DARK_DATA.value] = 0
ax = geom.plot_data_fast(np.mean(cm>0, axis=0),
vmin=0, ax=ax, vmax=1, cmap="jet")
```
......
%% Cell type:markdown id: tags:
# AGIPD Retrieving Constants Pre-correction #
Author: European XFEL Detector Group, Version: 1.0
Retrieving Required Constants for Offline Calibration of the AGIPD Detector
%% Cell type:code id: tags:
``` python
cluster_profile = "noDB"
in_folder = "/gpfs/exfel/exp/SPB/202030/p900119/raw" # the folder to read data from, required
out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/AGIPD_" # the folder to output to, required
sequences = [-1] # sequences to correct, set to -1 for all, range allowed
modules = [-1] # modules to correct, set to -1 for all, range allowed
run = 80 # runs to process, required
karabo_id = "SPB_DET_AGIPD1M-1" # karabo karabo_id
karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators
path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data
h5path_ctrl = '/CONTROL/{}/MDL/FPGA_COMP_TEST' # path to control information
karabo_id_control = "SPB_IRU_AGIPD1M1" # karabo-id for control device
karabo_da_control = 'AGIPD1MCTRL00' # karabo DA for control infromation
use_dir_creation_date = True # use the creation data of the input dir for database queries
cal_db_interface = "tcp://max-exfl016:8015#8045" # the database interface to use
creation_date_offset = "00:00:00" # add an offset to creation date, e.g. to get different constants
slopes_ff_from_files = "" # Path to locally stored SlopesFF and BadPixelsFF constants
calfile = "" # path to calibration file. Leave empty if all data should come from DB
nodb = False # if set only file-based constants will be used
mem_cells = 0 # number of memory cells used, set to 0 to automatically infer
bias_voltage = 300
acq_rate = 0. # the detector acquisition rate, use 0 to try to auto-determine
gain_setting = 0.1 # the gain setting, use 0.1 to try to auto-determine
photon_energy = 9.2 # photon energy in keV
max_cells_db_dark = 0 # set to a value different than 0 to use this value for dark data DB queries
max_cells_db = 0 # set to a value different than 0 to use this value for DB queries
# Correction Booleans
only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.
rel_gain = False # do relative gain correction based on PC data
xray_gain = True # do relative gain correction based on xray data
blc_noise = False # if set, baseline correction via noise peak location is attempted
blc_stripes = False # if set, baseline corrected via stripes
blc_hmatch = False # if set, base line correction via histogram matching is attempted
match_asics = False # if set, inner ASIC borders are matched to the same signal level
adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value
```
%% Cell type:code id: tags:
``` python
# Fill dictionaries comprising bools and arguments for correction and data analysis
# Here the herarichy and dependability for correction booleans are defined
corr_bools = {}
# offset is at the bottom of AGIPD correction pyramid.
corr_bools["only_offset"] = only_offset
# Dont apply any corrections if only_offset is requested
if not only_offset:
corr_bools["adjust_mg_baseline"] = adjust_mg_baseline
corr_bools["rel_gain"] = rel_gain
corr_bools["xray_corr"] = xray_gain
corr_bools["blc_noise"] = blc_noise
corr_bools["blc_hmatch"] = blc_hmatch
```
%% Cell type:code id: tags:
``` python
import sys
from collections import OrderedDict
# make sure a cluster is running with ipcluster start --n=32, give it a while to start
import os
import h5py
import numpy as np
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
from ipyparallel import Client
print(f"Connecting to profile {cluster_profile}")
view = Client(profile=cluster_profile)[:]
view.use_dill()
import multiprocessing as mp
from iCalibrationDB import Constants, Conditions, Detectors
from cal_tools.tools import (map_modules_from_folder, get_dir_creation_date)
from cal_tools.agipdlib import get_gain_setting
from dateutil import parser
from datetime import timedelta
```
%% Cell type:code id: tags:
``` python
max_cells = mem_cells
creation_time = None
if use_dir_creation_date:
creation_time = get_dir_creation_date(in_folder, run)
offset = parser.parse(creation_date_offset)
delta = timedelta(hours=offset.hour, minutes=offset.minute, seconds=offset.second)
creation_time += delta
print(f"Using {creation_time} as creation time")
if sequences[0] == -1:
sequences = None
if in_folder[-1] == "/":
in_folder = in_folder[:-1]
print(f"Outputting to {out_folder}")
os.makedirs(out_folder, exist_ok=True)
import warnings
warnings.filterwarnings('ignore')
from cal_tools.agipdlib import SnowResolution
melt_snow = False if corr_bools["only_offset"] else SnowResolution.NONE
```
%% Cell type:code id: tags:
``` python
control_fname = f'{in_folder}/r{run:04d}/RAW-R{run:04d}-{karabo_da_control}-S00000.h5'
h5path_ctrl = h5path_ctrl.format(karabo_id_control)
if gain_setting == 0.1:
if creation_time.replace(tzinfo=None) < parser.parse('2020-01-31'):
print("Set gain-setting to None for runs taken before 2020-01-31")
gain_setting = None
else:
try:
gain_setting = get_gain_setting(control_fname, h5path_ctrl)
except Exception as e:
print(f'ERROR: while reading gain setting from: \n{control_fname}')
print(e)
print("Set gain setting to 0")
gain_setting = 0
print(f"Gain setting: {gain_setting}")
print(f"Detector in use is {karabo_id}")
# Extracting Instrument string
instrument = karabo_id.split("_")[0]
# Evaluate detector instance for mapping
if instrument == "SPB":
dinstance = "AGIPD1M1"
nmods = 16
elif instrument == "MID":
dinstance = "AGIPD1M2"
nmods = 16
# TODO: Remove DETLAB
elif instrument == "HED" or instrument == "DETLAB":
dinstance = "AGIPD500K"
nmods = 8
print(f"Instrument {instrument}")
print(f"Detector instance {dinstance}")
if karabo_da[0] == '-1':
if modules[0] == -1:
modules = list(range(nmods))
karabo_da = ["AGIPD{:02d}".format(i) for i in modules]
else:
modules = [int(x[-2:]) for x in karabo_da]
```
%% Cell type:code id: tags:
``` python
# set everything up filewise
print(f"Checking the files before retrieving constants")
mmf = map_modules_from_folder(in_folder, run, path_template, karabo_da, sequences)
mapped_files, mod_ids, total_sequences, sequences_qm, _ = mmf
```
%% Cell type:markdown id: tags:
## Retrieve Constants ##
%% Cell type:code id: tags:
``` python
from functools import partial
import yaml
def retrieve_constants(karabo_id, bias_voltage, max_cells, acq_rate,
gain_setting, photon_energy, only_dark, nodb_with_dark,
cal_db_interface, creation_time,
corr_bools, pc_bools, inp):
"""
Retreive constant for each module in parallel and produce a dictionary
with the creation-time and constant file path.
:param karabo_id: (STR) Karabo ID
:param bias_voltage: (FLOAT) Bias Voltage
:param max_cells: (INT) Memory cells
:param acq_rate: (FLOAT) Acquisition Rate
:param gain_setting: (FLOAT) Gain setting
:param photon_energy: (FLOAT) Photon Energy
:param only_dark: (BOOL) only retrieve dark constants
:param nodb_with_dark: (BOOL) no constant retrieval even for dark
:param cal_db_interface: (STR) the database interface port
:param creation_time: (STR) raw data creation time
:param corr_bools: (DICT) A dictionary with bools for applying requested corrections
:param pc_bools: (LIST) list of bools to retrieve pulse capacitor constants
:param inp: (LIST) input for the parallel cluster of the partial function
:return:
mdata_dict: (DICT) dictionary with the metadata for the retrieved constants
dev.device_name: (STR) device name
"""
import numpy as np
import sys
import traceback
from cal_tools.agipdlib import get_num_cells, get_acq_rate
from cal_tools.agipdutils import assemble_constant_dict
from cal_tools.tools import get_from_db
from iCalibrationDB import Constants, Conditions, Detectors
err = None
qm_files, qm, dev, idx = inp
# get number of memory cells from a sequence file with image data
for f in qm_files:
if not max_cells:
max_cells = get_num_cells(f, karabo_id, idx)
if max_cells is None:
if f != qm_files[-1]:
continue
else:
raise ValueError(f"No raw images found for {qm} for all sequences")
else:
cells = np.arange(max_cells)
# get out of the loop,
# if max_cells is successfully calculated.
break
if acq_rate == 0.:
acq_rate = get_acq_rate((f, karabo_id, idx))
print(f"Set memory cells to {max_cells}")
print(f"Set acquistion rate cells to {acq_rate} MHz")
# avoid creating retireving constant, if requested.
if not nodb_with_dark:
const_dict = assemble_constant_dict(corr_bools, pc_bools, max_cells, bias_voltage,
gain_setting, acq_rate, photon_energy,
beam_energy=None, only_dark=only_dark)
# Retrieve multiple constants through an input dictionary
# to return a dict of useful metadata.
mdata_dict = dict()
for cname, cval in const_dict.items():
try:
condition = getattr(Conditions, cval[2][0]).AGIPD(**cval[2][1])
co, mdata = \
get_from_db(dev, getattr(Constants.AGIPD, cname)(),
condition, getattr(np, cval[0])(cval[1]),
cal_db_interface, creation_time, meta_only=True)
mdata_const = mdata.calibration_constant_version
# saving metadata in a dict
mdata_dict[cname] = dict()
# check if constant was sucessfully retrieved.
if mdata.comm_db_success:
mdata_dict[cname]["file-path"] = f"{mdata_const.hdf5path}" \
f"{mdata_const.filename}"
mdata_dict[cname]["creation-time"] = f"{mdata_const.begin_at}"
else:
mdata_dict[cname]["file-path"] = const_dict[cname][:2]
mdata_dict[cname]["creation-time"] = None
except Exception as e:
err = f"Error: {e}, Traceback: {traceback.format_exc()}"
print(err)
# saving metadata in a dict
mdata_dict[cname] = dict()
if slopes_ff_from_files and cname in ["SlopesFF", "BadPixelsFF"]:
mdata_dict[cname]["file-path"] = f"{slopes_ff_from_files}/slopesff_bpmask_module_{qm}.h5"
mdata_dict[cname]["creation-time"] = "00:00:00"
else:
try:
condition = getattr(Conditions, cval[2][0]).AGIPD(**cval[2][1])
co, mdata = \
get_from_db(dev, getattr(Constants.AGIPD, cname)(),
condition, getattr(np, cval[0])(cval[1]),
cal_db_interface, creation_time, meta_only=True, verbosity=0)
mdata_const = mdata.calibration_constant_version
# check if constant was sucessfully retrieved.
if mdata.comm_db_success:
mdata_dict[cname]["file-path"] = f"{mdata_const.hdf5path}" \
f"{mdata_const.filename}"
mdata_dict[cname]["creation-time"] = f"{mdata_const.begin_at}"
else:
mdata_dict[cname]["file-path"] = const_dict[cname][:2]
mdata_dict[cname]["creation-time"] = None
except Exception as e:
err = f"Error: {e}, Traceback: {traceback.format_exc()}"
print(err)
return qm, mdata_dict, dev.device_name, acq_rate, max_cells, err
pc_bools = [corr_bools.get("rel_gain"),
corr_bools.get("adjust_mg_baseline"),
corr_bools.get('blc_noise'),
corr_bools.get('blc_hmatch'),
corr_bools.get('blc_stripes'),
melt_snow]
inp = []
only_dark = False
nodb_with_dark = False
if not nodb:
only_dark=(calfile != "")
if calfile != "" and not corr_bools["only_offset"]:
nodb_with_dark = nodb
# A dict to connect virtual device
# to actual device name.
for i in modules:
qm = f"Q{i//4+1}M{i%4+1}"
if qm in mapped_files and not mapped_files[qm].empty():
device = getattr(getattr(Detectors, dinstance), qm)
qm_files = [str(mapped_files[qm].get()) for _ in range(mapped_files[qm].qsize())]
else:
print(f"Skipping {qm}")
continue
inp.append((qm_files, qm, device, i))
p = partial(retrieve_constants, karabo_id, bias_voltage, max_cells,
acq_rate, gain_setting, photon_energy, only_dark, nodb_with_dark,
cal_db_interface, creation_time,
corr_bools, pc_bools)
results = view.map_sync(p, inp)
#results = list(map(p, inp))
with mp.Pool(processes=16) as pool:
results = pool.map(p, inp)
mod_dev = dict()
mdata_dict = dict()
for r in results:
if r:
qm, md_dict, dname, acq_rate, max_cells, err = r
mod_dev[dname] = {"mod": qm, "err": err}
if err:
print(f"Error for module {qm}: {err}")
mdata_dict[dname] = md_dict
# check if it is requested not to retrieve any constants from the database
if not nodb_with_dark:
with open(f"{out_folder}/retrieved_constants.yml", "w") as outfile:
yaml.safe_dump(mdata_dict, outfile)
print("\nRetrieved constants for modules: ",
f"{[', '.join([f'Q{x//4+1}M{x%4+1}' for x in modules])]}")
print(f"Operating conditions are:\n• Bias voltage: {bias_voltage}\n• Memory cells: {max_cells}\n"
f"• Acquisition rate: {acq_rate}\n• Gain setting: {gain_setting}\n• Photon Energy: {photon_energy}\n")
print(f"Constant metadata is saved in retrieved_constants.yml\n")
else:
print("No constants were retrieved as calibrated files will be used.")
```
%% Cell type:code id: tags:
``` python
print("Constants are retrieved with creation time: ")
i = 0
when = dict()
to_store = []
for dname, dinfo in mod_dev.items():
print(dinfo["mod"], ":")
line = [dinfo["mod"]]
if dname in mdata_dict:
for cname, mdata in mdata_dict[dname].items():
if hasattr(mdata["creation-time"], 'strftime'):
mdata["creation-time"] = mdata["creation-time"].strftime('%y-%m-%d %H:%M')
print(f'{cname:.<12s}', mdata["creation-time"])
# Store few time stamps if exists
# Add NA to keep array structure
for cname in ['Offset', 'SlopesPC', 'SlopesFF']:
if not dname in mdata_dict or dinfo["err"]:
line.append('Err')
else:
if cname in mdata_dict[dname]:
if mdata_dict[dname][cname]["creation-time"]:
line.append(mdata_dict[dname][cname]["creation-time"])
else:
line.append('NA')
else:
line.append('NA')
to_store.append(line)
i += 1
if sequences:
seq_num = sequences[0]
else:
# if sequences[0] changed to None as it was -1
seq_num = 0
with open(f"{out_folder}/retrieved_constants.yml","r") as fyml:
time_summary = yaml.safe_load(fyml)
time_summary.update({"time-summary": {
"SAll":to_store
}})
with open(f"{out_folder}/retrieved_constants.yml","w") as fyml:
yaml.safe_dump(time_summary, fyml)
```
%% Cell type:code id: tags:
``` python
```
......
This diff is collapsed.
......@@ -21,6 +21,8 @@ notebooks = {
"FF": {
"notebook":
"notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb",
"dep_notebooks": [
"notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_Summary.ipynb"],
"concurrency": {"parameter": "modules",
"default concurrency": 16,
"cluster cores": 16},
......