Skip to content
Snippets Groups Projects

[Generic] Injection code for DynamicFF corrections

Merged Philipp Schmidt requested to merge feat/shimadzu-injection into feat/shimadzu-correction
All threads resolved!
3 files
+ 343
27
Compare changes
  • Side-by-side
  • Inline
Files
3
%% Cell type:markdown id: tags:
# Characterization of dark and flat field for Dynamic Flat Field correction
Author: Egor Sobolev
Computation of dark offsets and flat-field principal components
%% Cell type:code id: tags:
``` python
in_folder = "/gpfs/exfel/exp/SPB/202430/p900425/raw" # input folder, required
out_folder = '/gpfs/exfel/data/scratch/esobolev/test/shimadzu' # output folder, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
run_high = 1 # run number in which dark data was recorded, required
run_low = 2 # run number in which flat-field data was recorded, required
operation_mode = "PCA_DynamicFF" # Detector operation mode, optional (defaults to "PCA_DynamicFF")
# Data files parameters.
karabo_da = ['-1'] # data aggregators
karabo_id = "SPB_MIC_HPVX2" # karabo prefix of Shimadzu HPV-X2 devices
# Database access parameters.
cal_db_interface = "tcp://max-exfl-cal001:8021" # Unused, calibration DB interface to use
cal_db_timeout = 30000 # Unused, calibration DB timeout
db_output = False # if True, the notebook sends dark constants to the calibration database
local_output = True # if True, the notebook saves dark constants locally
# Calibration constants parameters
n_components = 50 # Number of principal components of flat-field to compute (default: 50)
```
%% Cell type:code id: tags:
``` python
import datetime
import os
import warnings
from logging import warning
from shutil import copyfile
from tempfile import NamedTemporaryFile
warnings.filterwarnings('ignore')
import time
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown
from extra_data import RunDirectory
%matplotlib inline
from cal_tools.step_timing import StepTimer
from cal_tools.tools import (
get_dir_creation_date,
run_prop_seq_from_path,
save_dict_to_hdf5
)
from cal_tools.restful_config import calibration_client, extra_calibration_client
from cal_tools.shimadzu import ShimadzuHPVX2
from cal_tools.constants import write_ccv, inject_ccv
import dynflatfield as dffc
from dynflatfield.draw import plot_images, plot_camera_image
```
%% Cell type:code id: tags:
``` python
extra_calibration_client() # Configure CalibrationData.
cc = calibration_client()
pdus = cc.get_all_phy_det_units_from_detector(
{"detector_identifier": karabo_id}) # TODO: Use creation_time for snapshot_at
if not pdus["success"]:
raise ValueError("Failed to retrieve PDUs")
detector_info = pdus['data'][0]['detector']
detector = ShimadzuHPVX2(detector_info["source_name_pattern"])
print(f"Instrument {detector.instrument}")
print(f"Detector in use is {karabo_id}")
modules = {}
for pdu_no, pdu in enumerate(pdus["data"]):
db_module = pdu["physical_name"]
module = pdu["module_number"]
da = pdu["karabo_da"]
if karabo_da[0] != "-1" and da not in karabo_da:
continue
instrument_source_name = detector.instrument_source(module)
print('-', da, db_module, module, instrument_source_name)
modules[da] = dict(
db_module=db_module,
module=module,
raw_source_name=instrument_source_name,
pdu_no=pdu_no,
)
constants = {}
step_timer = StepTimer()
```
%% Cell type:markdown id: tags:
# Offset map
%% Cell type:code id: tags:
``` python
dark_run = run_high
dark_creation_time = get_dir_creation_date(in_folder, dark_run)
print(f"Using {dark_creation_time} as creation time of Offset constant.")
for da, meta in modules.items():
source_name = detector.instrument_source(meta["module"])
image_key = detector.image_key
display(Markdown(f"## {source_name}"))
# read
step_timer.start()
file_da, _, _ = da.partition('/')
dark_dc = RunDirectory(f"{in_folder}/r{dark_run:04d}",
include=f"RAW-R{dark_run:04d}-{file_da}-S*.h5")
if source_name not in dark_dc.all_sources:
raise ValueError(f"Could not find source {source_name} for module {da} in dark data")
dark_dc = dark_dc.select([(source_name, image_key)])
conditions = detector.conditions(dark_dc, meta["module"])
key_data = dark_dc[source_name, image_key]
images_dark = key_data.ndarray()
ntrain, npulse, ny, nx = images_dark.shape
print(f"N image: {ntrain * npulse} (ntrain: {ntrain}, npulse: {npulse})")
print(f"Image size: {ny} x {nx} px")
step_timer.done_step("Read dark images")
# process
step_timer.start()
dark = dffc.process_dark(images_dark) # Amounts to a per-pixel mean right now.
# put results in the dict
module_constants = constants.setdefault(meta["db_module"], {})
module_constants["Offset"] = dict(
conditions=conditions, data=dark, pdu_no=meta["pdu_no"],
creation_time=dark_creation_time
creation_time=dark_creation_time, dims=['ss', 'fs']
)
step_timer.done_step("Process dark images")
display()
# draw plots
step_timer.start()
plot_camera_image(dark)
plt.show()
step_timer.done_step("Draw offsets")
```
%% Cell type:markdown id: tags:
# Flat-field PCA decomposition
%% Cell type:code id: tags:
``` python
flat_run = run_low
flat_creation_time = get_dir_creation_date(in_folder, flat_run)
print(f"Using {flat_creation_time} as creation time of DynamicFF constant.")
for da, meta in modules.items():
source_name = detector.instrument_source(meta["module"])
image_key = detector.image_key
display(Markdown(f"## {source_name}"))
# read
step_timer.start()
file_da, _, _ = da.partition('/')
flat_dc = RunDirectory(f"{in_folder}/r{flat_run:04d}",
include=f"RAW-R{flat_run:04d}-{file_da}-S*.h5")
if source_name not in flat_dc.all_sources:
raise ValueError(f"Could not find source {source_name} for module {da} in flatfield data")
flat_dc = flat_dc.select([(source_name, image_key)])
conditions = detector.conditions(flat_dc, meta["module"])
dark = constants[meta["db_module"]]["Offset"]["data"]
dark_conditions = constants[meta["db_module"]]["Offset"]["conditions"]
if conditions != dark_conditions:
raise ValueError(f"The conditions for flat-field run {conditions}) do not match "
f"the dark run conditions ({dark_conditions}). Skip flat-field characterization.")
key_data = flat_dc[source_name][image_key]
images_flat = key_data.ndarray()
ntrain, npulse, ny, nx = images_flat.shape
print(f"N image: {ntrain * npulse} (ntrain: {ntrain}, npulse: {npulse})")
print(f"Image size: {ny} x {nx} px")
step_timer.done_step("Read flat-field images")
# process
step_timer.start()
flat, components, explained_variance_ratio = dffc.process_flat(
images_flat, dark, n_components)
flat_data = np.concatenate([flat[None, ...], components])
# put results in the dict
conditions = detector.conditions(flat_dc, meta["module"])
module_constants = constants.setdefault(meta["db_module"], {})
module_constants["DynamicFF"] = dict(
conditions=conditions, data=flat_data, pdu_no=meta["pdu_no"],
creation_time=flat_creation_time
creation_time=flat_creation_time, dims=['component', 'ss', 'fs']
)
step_timer.done_step("Process flat-field images")
# draw plots
step_timer.start()
display(Markdown("### Average flat-field"))
plot_camera_image(flat)
plt.show()
display(Markdown("### Explained variance ratio"))
fig, ax = plt.subplots(1, 1, figsize=(10,4), tight_layout=True)
ax.semilogy(explained_variance_ratio, 'o')
ax.set_xticks(np.arange(len(explained_variance_ratio)))
ax.set_xlabel("Component no.")
ax.set_ylabel("Variance fraction")
plt.show()
display(Markdown("### The first principal components (up to 20)"))
plot_images(components[:20], figsize=(13, 8))
plt.show()
step_timer.done_step("Draw flat-field")
```
%% Cell type:markdown id: tags:
## Calibration constants
%% Cell type:code id: tags:
``` python
step_timer.start()
_, proposal, _ = run_prop_seq_from_path(in_folder)
# Output Folder Creation:
if local_output:
os.makedirs(out_folder, exist_ok=True)
def inject_ccv(in_folder, metadata_folder, runs, calibration, cond, pdu, const_input, begin_at):
print("* Send to db:", const_input)
print(" - in folder:", in_folder)
print(" - metadata folder:", metadata_folder)
print(" - runs:", runs)
print(" -", calibration)
print(" -", cond)
print(" -", begin_at)
for db_module, module_constants in constants.items():
for constant_name, constant in module_constants.items():
conditions = constant["conditions"]
conditions_dict = conditions.make_dict(
conditions.calibration_types[constant_name])
data_to_store = {db_module: {constant_name: {'0': {
'conditions': conditions_dict,
'data': constant["data"],
}}}}
pdu = pdus["data"][constant["pdu_no"]]
with NamedTemporaryFile() as tempf:
save_dict_to_hdf5(data_to_store, tempf)
ccv_root = write_ccv(
tempf.name,
pdu['physical_name'], pdu['uuid'], pdu['detector_type']['name'],
constant_name, conditions, constant['creation_time'],
proposal, [dark_run, flat_run],
constant["data"], constant['dims'])
if db_output:
inject_ccv(
in_folder, metadata_folder, [dark_run, flat_run],
constant_name, conditions, pdus["data"][constant["pdu_no"]],
ofile, constant["creation_time"]
)
inject_ccv(tempf.name, ccv_root, metadata_folder)
if local_output:
ofile = f"{out_folder}/const_{constant_name}_{db_module}.h5"
if os.path.isfile(ofile):
print(f'File {ofile} already exists and will be overwritten')
copyfile(tempf.name, ofile)
```
%% Cell type:code id: tags:
``` python
print(f"Total processing time {step_timer.timespan():.01f} s")
step_timer.print_summary()
```
Loading