Newer
Older
# -*- coding: utf-8 -*-
""" Toolbox for SCS.
Various utilities function to quickly process data measured at the SCS instruments.
Copyright (2019) SCS Team.
"""

Loïc Le Guyader
committed
import numpy as np

Loïc Le Guyader
committed
import xarray as xr
mnemonics = {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Machine
"sase3": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase3.pulseIds.value',
'dim':['bunchId']},
"sase2": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase2.pulseIds.value',
'dim':['bunchId']},
"sase1": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase1.pulseIds.value',
'dim':['bunchId']},
"maindump": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'maindump.pulseIds.value',
'dim':['bunchId']},
"bunchpattern": {'source':'SCS_RR_UTC/TSYS/TIMESERVER',
'key':'readBunchPatternTable.value',
'dim':None},
"npulses_sase3": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase3.nPulses.value',
'dim':None},
"npulses_sase1": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase1.nPulses.value',
'dim':None},
# SA3
"nrj": {'source':'SA3_XTD10_MONO/MDL/PHOTON_ENERGY',
'key':'actualEnergy.value',
'dim':None},
"M2BEND": {'source': 'SA3_XTD10_MIRR-2/MOTOR/BENDER',
'key': 'actualPosition.value',
'dim':None},
"VSLIT": {'source':'SA3_XTD10_VSLIT/MDL/BLADE',
'key':'actualGap.value',
'dim':None},
"ESLIT": {'source':'SCS_XTD10_ESLIT/MDL/MAIN',
'key':'actualGap.value',
'dim':None},
"HSLIT": {'source':'SCS_XTD10_HSLIT/MDL/BLADE',
'key':'actualGap.value',
'dim':None},
"transmission": {'source':'SA3_XTD10_GATT/MDL/GATT_TRANSMISSION_MONITOR',
'key':'Estimated_Tr.value',
'dim':None},
"GATT_pressure": {'source':'P_GATT',
'key':'value.value',
'dim':None},
# XGMs
"SA3_XGM": {'source':'SA3_XTD10_XGM/XGM/DOOCS:output',
'key':'data.intensityTD',
'dim':['XGMbunchId']},
"SA3_XGM_SLOW": {'source':'SA3_XTD10_XGM/XGM/DOOCS',
'key':'pulseEnergy.photonFlux.value',
'dim':None},
"SCS_XGM": {'source':'SCS_BLU_XGM/XGM/DOOCS:output',
'key':'data.intensityTD',
'dim':['XGMbunchId']},
"SCS_XGM_SLOW": {'source':'SCS_BLU_XGM/XGM/DOOCS',
'key':'pulseEnergy.photonFlux.value',
'dim':None},
# KBS
"HFM_CAPB": {'source':'SCS_KBS_HFM/ASENS/CAPB',
'key':'value.value',
'dim':None},
"HFM_CAPF": {'source':'SCS_KBS_HFM/ASENS/CAPF',
'key':'value.value',
'dim':None},
"HFM_CAPM": {'source':'SCS_KBS_HFM/ASENS/CAPM',
'key':'value.value',
'dim':None},
"HFM_BENDERB": {'source':'SCS_KBS_HFM/MOTOR/BENDERB',
'key':'encoderPosition.value',
'dim':None},
"HFM_BENDERF": {'source':'SCS_KBS_HFM/MOTOR/BENDERF',
'key':'encoderPosition.value',
'dim':None},
"VFM_CAPB": {'source':'SCS_KBS_VFM/ASENS/CAPB',
'key':'value.value',
'dim':None},
"VFM_CAPF": {'source':'SCS_KBS_VFM/ASENS/CAPF',
'key':'value.value',
'dim':None},
"VFM_CAPM": {'source':'SCS_KBS_VFM/ASENS/CAPM',
'key':'value.value',
'dim':None},
"VFM_BENDERB": {'source':'SCS_KBS_VFM/MOTOR/BENDERB',
'key':'encoderPosition.value',
'dim':None},
"VFM_BENDERF": {'source':'SCS_KBS_VFM/MOTOR/BENDERF',
'key':'encoderPosition.value',
'dim':None},
# FFT
"scannerX": {'source':'SCS_CDIFFT_SAM/LMOTOR/SCANNERX',
'key':'actualPosition.value',
'dim':None},
"scannerY": {'source':'SCS_CDIFFT_SAM/MOTOR/SCANNERY',
'key':'actualPosition.value',
'dim':None},
"scannerY_enc": {'source':'SCS_CDIFFT_SAM/ENC/SCANNERY',
'key':'value.value',
'dim':None},
"SAM-Z": {'source':'SCS_CDIFFT_MOV/ENC/SAM_Z',
'key':'value.value',
'dim':None},
"magnet": {'source':'SCS_CDIFFT_MAG/SUPPLY/CURRENT',
'key':'actual_current.value',
'dim':None},

Loïc Le Guyader
committed
# FastCCD, if in raw folder, raw images
# if in proc folder, dark substracted and relative gain corrected
"fastccd": {'source':'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
'key':'data.image.pixels',
'dim':['x', 'y']},

Loïc Le Guyader
committed
# FastCCD with common mode correction
"fastccd_cm": {'source':'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
'key':'data.image.pixels_cm',
'dim':['x', 'y']},
# FastCCD charge split correction in very low photon count regime
"fastccd_classified": {'source':'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
'key':'data.image.pixels_classified',
'dim':['x', 'y']},
# FastCCD event multiplicity from the charge split correction:
# 0: no events
# 100, 101: single events
# 200-203: charge split into two pixels in four different orientations
# 300-303: charge split into three pixels in four different orientations
# 400-403: charge split into four pixels in four different orientations
# 1000: charge in more than four neighboring pixels. Cannot be produced by a single photon alone.
"fastccd_patterns": {'source':'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
'key':'data.image.patterns',
'dim':['x', 'y']},

Loïc Le Guyader
committed
# FastCCD gain map, 0 high gain, 1 medium gain, 2, low gain
"fastccd_gain": {'source':'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
'key':'data.image.gain',
'dim':['x', 'y']},
# FastCCD mask, bad pixel map to be ignored if > 0
"fastccd_mask": {'source':'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
'key':'data.image.mask',
'dim':['x', 'y']},
# TIM
"MCP1apd": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.apd.pulseIntegral',
'dim':['apdId']},
"MCP1raw": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.raw.samples',
'dim':['samplesId']},
"MCP2apd": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_C.apd.pulseIntegral',
'dim':['apdId']},
"MCP2raw": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.raw.samples',
'dim':['samplesId']},
"MCP3apd": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_B.apd.pulseIntegral',
'dim':['apdId']},
"MCP3raw": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.raw.samples',
'dim':['samplesId']},
"MCP4apd": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_A.apd.pulseIntegral',
'dim':['apdId']},
"MCP4raw": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.raw.samples',
# KARABACON
"KARABACON": {'source':'SCS_DAQ_SCAN/MDL/KARABACON',
'key': 'actualStep.value',
'dim': None}

Loïc Le Guyader
committed
}
def load(fields, runNB, proposalNB, semesterNB, topic='SCS', display=False,
validate=False, runpath='/gpfs/exfel/exp/{}/{}/{}/raw/r{:04d}/',
subset=by_index[:], rois={}):
""" Load a run and extract the data. Output is an xarray with aligned trainIds

Loïc Le Guyader
committed
Inputs:
fields: list of mnemonic strings to load specific data such as "fastccd", "SCS_XGM",
or dictionnaries defining a custom mnemonic such as
{"extra": {'SCS_CDIFFT_MAG/SUPPLY/CURRENT', 'actual_current.value', None}}

Loïc Le Guyader
committed
runNB: run number as integer
proposalNB: string of the proposal number
semesterNB: string of the semester number where the proposal data are saved
topic: string of the topic
display: boolean, whether to show the run.info or not
validate: boolean, whether to run karabo-data-validate or not
runpath: a string to fromat the run folder path with topic,
semesterNB, proposalNB and runNB
subset: a subset of train that can be load with by_index[:5] for the
first 5 trains
rois: a dictionnary of mnemonics with a list of rois definition and the desired
names, for example {'fastccd':{'ref':{'roi':by_index[730:890, 535:720],
'dim': ['ref_x', 'ref_y']}, 'sam':{'roi':by_index[1050:1210, 535:720],
'dim': ['sam_x', 'sam_y']}}}

Loïc Le Guyader
committed
Outputs:
res: an xarray DataSet with aligned trainIds
"""
runFolder = runpath.format(topic, semesterNB, proposalNB, runNB)
run = RunDirectory(runFolder).select_trains(subset)
if validate:
get_ipython().system('karabo-data-validate ' + runFolder)

Loïc Le Guyader
committed
if display:
run.info()
keys = []
vals = []

Loïc Le Guyader
committed
# always load pulse pattern infos
fields += ["sase1", "sase3", "npulses_sase3", "npulses_sase1"]

Loïc Le Guyader
committed
for f in fields:

Loïc Le Guyader
committed
if type(f) == dict:
# extracting mnemomic defined on the spot
if len(f.keys()) > 1:
print('Loading only one "on-the-spot" mnemonic at a time, skipping all others !')
k = list(f.keys())[0]
v = f[k]

Loïc Le Guyader
committed
else:
# extracting mnemomic from the table

Loïc Le Guyader
committed
if f in mnemonics:
v = mnemonics[f]
k = f

Loïc Le Guyader
committed
else:
print('Unknow mnemonic "{}". Skipping!'.format(f))
if k in keys:
continue # already loaded, skip
if display:
print('Loading {}'.format(k))
if v['source'] not in run.all_sources:
print('Source {} not found in run. Skipping!'.format(v['source']))
continue
if k not in rois:
# no ROIs selection, we read everything
vals.append(run.get_array(v['source'], v['key'], extra_dims=v['dim']))
keys.append(k)
else:
# ROIs selection, for each ROI we select a region of the data and save it with new name and dimensions
for nk,nv in rois[k].items():
vals.append(run.get_array(v['source'], v['key'], extra_dims=nv['dim'], roi=nv['roi']))
keys.append(nk)

Loïc Le Guyader
committed
aligned_vals = xr.align(*vals, join='inner')
result = dict(zip(keys, aligned_vals))
result = xr.Dataset(result)
result.attrs['run'] = run
return result