Newer
Older
from joblib import Parallel, delayed, parallel_backend
from time import strftime
import tempfile
import shutil
from tqdm.auto import tqdm
import os
import warnings
import extra_data as ed
from extra_data.read_machinery import find_proposal
from extra_geom import DSSC_1MGeometry
from mpl_toolkits.axes_grid1 import ImageGrid
import numpy as np
import xarray as xr
import h5py
def __init__(self, proposal, distance=1):
""" Create a DSSC object to process DSSC data.
inputs:
proposal: (int,str) proposal number string
distance: (float) distance sample to DSSC detector in meter
if isinstance(proposal,int):
proposal = 'p{:06d}'.format(proposal)
runFolder = find_proposal(proposal)
self.semester = runFolder.split('/')[-2]
self.topic = runFolder.split('/')[-3]
self.save_folder = os.path.join(runFolder, 'usr/condensed_runs/')
self.distance = distance
self.px_pitch_h = 236 # horizontal pitch in microns
self.px_pitch_v = 204 # vertical pitch in microns
self.aspect = self.px_pitch_v/self.px_pitch_h # aspect ratio of the DSSC images
self.geom = None
self.mask = None
print('DSSC configuration')
print(f'Topic: {self.topic}')
print(f'Semester: {self.semester}')
print(f'Proposal: {self.proposal}')
print(f'Default save folder: {self.save_folder}')
print(f'Sample to DSSC distance: {self.distance} m')
if not os.path.exists(self.save_folder):
warnings.warn(f'Default save folder does not exist: {self.save_folder}')
def __del__(self):
# deleting temporay folder
if self.tempdir:
shutil.rmtree(self.tempdir)
def open_run(self, run_nr, isDark=False):
""" Open a run with extra-data and prepare the virtual dataset for multiprocessing
inputs:
run_nr: the run number
isDark: a boolean to specify if the run is a dark run or not
"""
print('Opening run data with extra-data')
self.run_nr = run_nr
self.xgm = None
self.run = ed.open_run(self.proposal, self.run_nr)
self.plot_title = f'{self.proposal} run: {self.run_nr}'
self.fpt = self.run.detector_info('SCS_DET_DSSC1M-1/DET/0CH0:xtdf')['frames_per_train']
self.nbunches = self.run.get_array('SCS_RR_UTC/MDL/BUNCH_DECODER', 'sase3.nPulses.value')
self.nbunches = np.unique(self.nbunches)
if len(self.nbunches) == 1:
self.nbunches = self.nbunches[0]
else:
warnings.warn('not all trains have same length DSSC data')
print(f'nbunches: {self.nbunches}')
self.nbunches = self.nbunches[-1]
print(f'DSSC frames per train: {self.fpt}')
print(f'SA3 bunches per train: {self.nbunches}')
if self.tempdir is not None:
shutil.rmtree(self.tempdir)
self.tempdir = tempfile.mkdtemp()
print(f'Temporary directory: {self.tempdir}')
print('Creating virtual dataset')
self.vds_filenames = self.create_virtual_dssc_datasets(self.run, path=self.tempdir)
# create a dummy scan variable for dark run
# for other type or run, use DSSC.define_run function to overwrite it
self.scan = xr.DataArray(np.ones_like(self.run.train_ids), dims=['trainId'],
coords={'trainId': self.run.train_ids}).to_dataset(
name='scan_variable')
self.scan_vname = 'dummy'
def define_scan(self, vname, bins):
"""
Prepare the binning of the DSSC data.
inputs:
vname: variable name for the scan, can be a mnemonic string from ToolBox
or a dictionnary with ['source', 'key'] fields
bins: step size (or bins_edge but not yet implemented)
"""
if type(vname) is dict:
scan = self.run.get_array(vname['source'], vname['key'])
elif type(vname) is str:
if vname not in tb.mnemonics:
raise ValueError(f'{vname} not found in the ToolBox mnemonics table')
scan = self.run.get_array(tb.mnemonics[vname]['source'], tb.mnemonics[vname]['key'])
else:
raise ValueError(f'vname should be a string or a dict. We got {type(vname)}')
if (type(bins) is int) or (type(bins) is float):
scan = bins * np.round(scan / bins)
else:
# TODO: digitize the data
raise ValueError(f'To be implemented')
self.scan_vname = vname
self.scan = scan.to_dataset(name='scan_variable')
self.scan['xgm_pumped'] = self.xgm[:, :self.nbunches:2].mean('dim_0')
self.scan['xgm_unpumped'] = self.xgm[:, 1:self.nbunches:2].mean('dim_0')
self.scan_counts = xr.DataArray(np.ones(len(self.scan['scan_variable'])),
dims=['scan_variable'],
coords={'scan_variable': self.scan['scan_variable'].values},
name='counts')
self.scan_points = self.scan.groupby('scan_variable').mean('trainId').coords['scan_variable'].values
self.scan_points_counts = self.scan_counts.groupby('scan_variable').sum()
self.plot_scan()
def plot_scan(self):
""" Plot a previously defined scan to see the scan range and the statistics.
"""
if self.scan:
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=[5, 5])
else:
fig, ax1 = plt.subplots(nrows=1, figsize=[5, 2.5])
ax1.plot(self.scan_points, self.scan_points_counts, 'o-', ms=2)
ax1.set_xlabel(f'{self.scan_vname}')
ax1.set_ylabel('# trains')
ax1.set_title(self.plot_title)
if self.scan:
ax2.plot(self.scan['scan_variable'])
ax2.set_xlabel('train #')
ax2.set_ylabel(f'{self.scan_vname}')
""" Loads pulse resolved dedicated SAS3 data from the SCS XGM.
"""
if self.xgm is None:
self.xgm = self.run.get_array(tb.mnemonics['SCS_SA3']['source'],
tb.mnemonics['SCS_SA3']['key'], roi=ed.by_index[:self.nbunches])
def plot_xgm_hist(self, nbins=100):
""" Plots an histogram of the SCS XGM dedicated SAS3 data.
inputs:
nbins: number of the bins for the histogram.
"""
if self.xgm is None:
self.load_xgm()
hist, bins_edges = np.histogram(self.xgm, nbins, density=True)
width = 1.0 * (bins_edges[1] - bins_edges[0])
bins_center = 0.5*(bins_edges[:-1] + bins_edges[1:])
plt.figure(figsize=(5,3))
plt.bar(bins_center, hist, align='center', width=width)
plt.xlabel(f"{tb.mnemonics['SCS_SA3']['source']}{tb.mnemonics['SCS_SA3']['key']}")
plt.ylabel('density')
plt.title(self.plot_title)
def xgm_filter(self, xgm_low=-np.inf, xgm_high=np.inf):
""" Filters the data by train. If one pulse within a train has an SASE3 SCS XGM value below
xgm_low or above xgm_high, that train will be dropped from the dataset.
inputs:
xgm_low: low threshold value
xgm_high: high threshold value
"""
if self.xgm is None:
self.load_xgm()
if self.isDark:
warnings.warn(f'This run was loaded as dark. Filtering on xgm makes no sense. Aborting')
return
self.xgm_low = xgm_low
self.xgm_high = xgm_high
filter_mask = (self.xgm > self.xgm_low) * (self.xgm < self.xgm_high)
if self.filter_mask:
self.filter_mask = self.filter_mask*filter_mask
else:
self.filter_mask = filter_mask
valid = filter_mask.prod('dim_0').astype(bool)
xgm_valid = self.xgm.where(valid)
xgm_valid = xgm_valid.dropna('trainId')
self.scan = self.scan.sel({'trainId': xgm_valid.trainId})
nrejected = len(self.run.train_ids) - len(self.scan)
print((f'Rejecting {nrejected} out of {len(self.run.train_ids)} trains due to xgm '
f'thresholds: [{self.xgm_low}, {self.xgm_high}]'))

Loïc Le Guyader
committed
def load_geom(self, geopath=None, quad_pos=None):
""" Loads and return the DSSC geometry.

Loïc Le Guyader
committed
inputs:
geopath: path to the h5 geometry file. If None uses a default file.
quad_pos: list of quadrants tuple position. If None uses a default position.
output:
return the loaded geometry

Loïc Le Guyader
committed
if quad_pos is None:
quad_pos = [(-124.100, 3.112), # TR
(-133.068, -110.604), # BR
( 0.988, -125.236), # BL
( 4.528, -4.912) # TL
]
if geopath is None:
geopath = '/gpfs/exfel/sw/software/git/EXtra-geom/docs/dssc_geo_june19.h5'
self.geom = DSSC_1MGeometry.from_h5_file_and_quad_positions(geopath, quad_pos)
def load_mask(self, fname, plot=True):
""" Load a DSSC mask file.
input:
fname: string of the filename of the mask file
plot: if True, the loaded mask is plotted
"""
dssc_mask = imread(fname)
dssc_mask = dssc_mask.astype(float)[..., 0] // 255
dssc_mask[dssc_mask==0] = np.nan
self.mask = dssc_mask
if plot:
plt.figure()
plt.imshow(self.mask)
def create_virtual_dssc_datasets(self, run, path=''):
""" Create virtual datasets for each 16 DSSC modules used for the multiprocessing.
input:
path: string where the virtual files are created
output:
dictionnary of key:module, value:virtual dataset filename
vds_filenames = {}
for module in tqdm(range(16)):
fname = os.path.join(path, f'dssc{module}_vds.h5')
if os.path.isfile(fname):
os.remove(fname)
vds = run.get_virtual_dataset(f'SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf',
'image.data', filename=fname)
vds.file.close() # keep h5 file closed outside 'with' context
vds_filenames[module] = fname
return vds_filenames
def binning(self, do_pulse_mean=True):
""" Bin the DSSC data by the predifined scan type (DSSC.define()) using multiprocessing
# get available memory in GB, we will try to use 80 % of it
max_GB = psutil.virtual_memory().available/1024**3
print(f'max available memory: {max_GB} GB')
# max_GB / (8byte * Nworker * 128px * 512px * N_pulses)
self.chunksize = int(self.max_fraction_memory*max_GB * 1024**3 // (8 * self.Nworker * 128 * 512 * self.fpt))
print('processing', self.chunksize, 'trains per chunk')
jobs = []
for m in range(16):
jobs.append(dict(
module=m,
fpt=self.fpt,
vds=self.vds_filenames[m],
scan=self.scan['scan_variable'],
nbunches=self.nbunches,
run_nr=self.run_nr,
if self.Nworker != 16:
with warnings.catch_warnings():
warnings.simplefilter("default")
warnings.warn(('Nworker other than 16 known to cause issue' +
'(https://in.xfel.eu/gitlab/SCS/ToolBox/merge_requests/76)'),
RuntimeWarning)
timestamp = strftime('%X')
print(f'start time: {timestamp}')
with parallel_backend('loky', n_jobs=self.Nworker):
module_data = Parallel(verbose=20)(
delayed(process_one_module)(job) for job in tqdm(jobs)
)
print('finished:', strftime('%X'))
# rearange the multiprocessed data
self.module_data = xr.concat(module_data, dim='module')
self.module_data['run'] = self.run_nr
self.module_data = self.module_data.transpose('scan_variable', 'module', 'x', 'y')
if do_pulse_mean:
self.module_data = xr.merge([self.module_data, self.scan.groupby('scan_variable').mean('trainId')])
elif self.xgm is not None:
xgm_pumped = self.xgm[:, :self.nbunches:2].mean('trainId').to_dataset(name='xgm_pumped').rename({'dim_0':'scan_variable'})
xgm_unpumped = self.xgm[:, 1:self.nbunches:2].mean('trainId').to_dataset(name='xgm_unpumped').rename({'dim_0':'scan_variable'})
self.module_data = xr.merge([self.module_data, xgm_pumped, xgm_unpumped])
self.module_data = self.module_data.squeeze()
if do_pulse_mean:
self.module_data.attrs['scan_variable'] = self.scan_vname
else:
self.module_data.attrs['scan_variable'] = 'pulse id'
def save(self, save_folder=None, overwrite=False):
""" Save the crunched data.
inputs:
save_folder: string of the fodler where to save the data.
overwrite: boolean whether or not to overwrite existing files.
"""
fname = f'run{self.run_nr}_dark.nc' # no scan
fname = f'run{self.run_nr}.nc' # run with delay scan (change for other scan types!)
save_path = os.path.join(save_folder, fname)
file_exists = os.path.isfile(save_path)
if not file_exists or (file_exists and overwrite):
if file_exists:
warnings.warn(f'Overwriting file: {save_path}')
os.remove(save_path)
self.module_data.to_netcdf(save_path, group='data')
self.module_data.close()
os.chmod(save_path, 0o664)
print('saving: ', save_path)
else:
print('file', save_path, 'exists and overwrite is False')
def load_binned(self, runNB, dark_runNB, xgm_norm = True, save_folder=None):
""" load previously binned (crunched) DSSC data by DSSC.crunch() and DSSC.save()
inputs:
runNB: run number to load
dark_runNB: run number of the corresponding dark
xgm_norm: normlize by XGM data if True
save_folder: path string where the crunched data are saved
"""
if save_folder is None:
save_folder = self.save_folder
self.plot_title = f'{self.proposal} run: {runNB} dark: {dark_runNB}'
dark = xr.load_dataset(os.path.join(save_folder, f'run{dark_runNB}_dark.nc'), group='data',
engine='netcdf4')
binned = xr.load_dataset(os.path.join(save_folder, f'run{runNB}.nc'), group='data',
engine='netcdf4')
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
binned['pumped'] = (binned['pumped'] - dark['pumped'].values)
binned['unpumped'] = (binned['unpumped'] - dark['unpumped'].values)
if xgm_norm:
binned['pumped'] = binned['pumped'] / binned['xgm_pumped']
binned['unpumped'] = binned['unpumped'] / binned['xgm_unpumped']
self.scan_points = binned['scan_variable']
self.scan_points_counts = binned['sum_count'][:, 0]
self.scan_vname = binned.attrs['scan_variable']
self.scan = None
self.binned = binned
def plot_DSSC(self, use_mask = True, p_low = 1, p_high = 98, vmin = None, vmax = None):
""" Plot pumped and unpumped DSSC images.
inputs:
use_mask: if True, a mask is applied on the DSSC.
p_low: low percentile value to adjust the contrast scale on the unpumped and pumped image
p_high: high percentile value to adjust the contrast scale on the unpumped and pumped image
vmin: low value of the image scale
vmax: high value of the image scale
"""
if use_mask:
if self.mask is None:
raise ValueError('No mask was loaded !')
mask = self.mask
mask_txt = ' masked'
else:
mask = 1
mask_txt = ''
if self.geom is None:
self.load_geom()
im_pump_mean, _ = self.geom.position_modules_fast(self.binned['pumped'].mean('scan_variable'))
im_unpump_mean, _ = self.geom.position_modules_fast(self.binned['unpumped'].mean('scan_variable'))
self.im_pump_mean = mask*im_pump_mean
self.im_unpump_mean = mask*im_unpump_mean
fig = plt.figure(figsize=(9, 4))
grid = ImageGrid(fig, 111,
nrows_ncols=(1,2),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
_vmin, _vmax = np.percentile(self.im_pump_mean[~np.isnan(self.im_pump_mean)], [p_low, p_high])
if vmin is None:
vmin = _vmin
if vmax is None:
vmax = _vmax
im = grid[0].imshow(self.im_pump_mean, vmin=vmin, vmax=vmax, aspect=self.aspect)
grid[0].set_title('pumped' + mask_txt)
im = grid[1].imshow(self.im_unpump_mean, vmin=vmin, vmax=vmax, aspect=self.aspect)
grid[1].set_title('unpumped' + mask_txt)
grid[-1].cax.colorbar(im)
grid[-1].cax.toggle_label(True)
fig.suptitle(self.plot_title)
def azimuthal_int(self, wl, center=None, angle_range=[0, 180-1e-6], dr=1, use_mask=True):
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
""" Perform azimuthal integration of 1D binned DSSC run.
inputs:
wl: photon wavelength
center: center of integration
angle_range: angles of integration
dr: dr
use_mask: if True, use the loaded mask
"""
if self.geom is None:
self.load_geom()
if use_mask:
if self.mask is None:
raise ValueError('No mask was loaded !')
mask = self.mask
mask_txt = ' masked'
else:
mask = 1
mask_txt = ''
im_pumped_arranged, c_geom = self.geom.position_modules_fast(self.binned['pumped'].values)
im_unpumped_arranged, c_geom = self.geom.position_modules_fast(self.binned['unpumped'].values)
im_pumped_arranged *= mask
im_unpumped_arranged *= mask
im_pumped_mean = im_pumped_arranged.mean(axis=0)
im_unpumped_mean = im_unpumped_arranged.mean(axis=0)
if center is None:
center = c_geom
ai = tb.azimuthal_integrator(im_pumped_mean.shape, center, angle_range, dr=dr)
norm = ai(~np.isnan(im_pumped_mean))
az_pump = []
az_unpump = []
for i in tqdm(range(len(self.binned['scan_variable']))):
az_pump.append(ai(im_pumped_arranged[i]) / norm)
az_unpump.append(ai(im_unpumped_arranged[i]) / norm)
az_pump = np.stack(az_pump)
az_unpump = np.stack(az_unpump)
coords = {'scan_variable': self.binned['scan_variable'], 'distance': ai.distance}
azimuthal = xr.DataArray(az_pump, dims=['scan_variable', 'distance'], coords=coords)
azimuthal = azimuthal.to_dataset(name='pumped')
azimuthal['unpumped'] = xr.DataArray(az_unpump, dims=['scan_variable', 'distance'], coords=coords)
azimuthal = azimuthal.transpose('distance', 'scan_variable')
#t0 = 225.5
#azimuthal['delay'] = (t0 - azimuthal.delay)*6.6
#azimuthal['delay'] = azimuthal.delay
azimuthal['delta_q (1/nm)'] = 2e-9 * np.pi * np.sin(
np.arctan(azimuthal.distance * self.px_pitch_v*1e-6 / self.distance)) / wl
self.azimuthal = azimuthal.swap_dims({'distance': 'delta_q (1/nm)'})
def plot_azimuthal_int(self, kind='difference', lim=None):
""" Plot a computed azimuthal integration.
inputs:
kind: (str) either 'difference' or 'relative' to change the type of plot.
fig, [ax1, ax2, ax3] = plt.subplots(nrows=3, sharex=True, sharey=True)
xr.plot.imshow(self.azimuthal.pumped, ax=ax1, vmin=0, robust=True)
xr.plot.imshow(self.azimuthal.unpumped, ax=ax2, vmin=0, robust=True)
ax2.set_title('unpumped')
if kind == 'difference':
val = self.azimuthal.pumped - self.azimuthal.unpumped
ax3.set_title('pumped - unpumped')
elif kind == 'relative':
val = (self.azimuthal.pumped - self.azimuthal.unpumped)/self.azimuthal.unpumped
ax3.set_title('(pumped - unpumped)/unpumped')
else:
raise ValueError('kind should be either difference or relative')
xr.plot.imshow(val, ax=ax3, robust=True)
xr.plot.imshow(val, ax=ax3, vmin=lim[0], vmax=lim[1])
ax3.set_xlabel(self.scan_vname)
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
def plot_azimuthal_line_cut(self, data, qranges, qwidths):
""" Plot line scans on top of the data.
inputs:
data: an azimuthal integrated xarray DataArray with 'delta_q (1/nm)' as one of its dimension.
qranges: a list of q-range
qwidth: a list of q-width, same length as qranges
"""
fig, [ax1, ax2] = plt.subplots(nrows=2, sharex=True, figsize=[8, 7])
xr.plot.imshow(data, ax=ax1, robust=True)
# attributes are not propagated during xarray mathematical operation https://github.com/pydata/xarray/issues/988
# so we might not have in data the scan vaiable name anymore
ax1.set_xlabel(self.scan_vname)
fig.suptitle(f'{self.plot_title}')
for i, (qr, qw) in enumerate(zip(qranges, qwidths)):
sel = (data['delta_q (1/nm)'] > (qr - qw/2)) * (data['delta_q (1/nm)'] < (qr + qw/2))
val = data.where(sel).mean('delta_q (1/nm)')
ax2.plot(data.scan_variable, val, c=f'C{i}', label=f'q = {qr:.2f}')
ax1.axhline(qr - qw/2, c=f'C{i}', lw=1)
ax1.axhline(qr + qw/2, c=f'C{i}', lw=1)
ax2.legend()
ax2.set_xlabel(self.scan_vname)
# since 'self' is not pickable, this function has to be outside the DSSC class so that it can be used
# by the multiprocessing pool.map function
def process_one_module(job):
module = job['module']
fpt = job['fpt']
vds = job['vds']
scan = job['scan']
chunksize = job['chunksize']
nbunches = job['nbunches']
image_path = f'INSTRUMENT/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/data'
npulse_path = f'INDEX/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/count'
with h5py.File(vds, 'r') as m:
all_trainIds = m['INDEX/trainId'][()]
frames_per_train = m[npulse_path][()]
trains_with_data = all_trainIds[frames_per_train == fpt]
len_scan = len(scan.groupby(scan))
if do_pulse_mean:
# create empty dataset to add actual data to
module_data = xr.DataArray(np.empty([len_scan, 128, 512], dtype=np.float64),
dims=['scan_variable', 'x', 'y'],
coords={'scan_variable': np.unique(scan)})
module_data = module_data.to_dataset(name='pumped')
module_data['unpumped'] = xr.full_like(module_data['pumped'], 0)
module_data['sum_count'] = xr.DataArray(np.zeros_like(np.unique(scan)), dims=['scan_variable'])
module_data['module'] = module
else:
scan = xr.full_like(scan, 1)
len_scan = len(scan.groupby(scan))
module_data = xr.DataArray(np.empty([len_scan, int(nbunches/2), 128, 512], dtype=np.float64),
dims=['scan_variable', 'pulse', 'x', 'y'],
coords={'scan_variable': np.unique(scan)})
module_data = module_data.to_dataset(name='pumped')
module_data['unpumped'] = xr.full_like(module_data['pumped'], 0)
module_data['sum_count'] = xr.full_like(module_data['pumped'][..., 0, 0], 0)
module_data['module'] = module
with h5py.File(vds, 'r') as m:
chunk_start = np.arange(len(all_trainIds), step=chunksize, dtype=int)
trains_start = 0
# This line is the strange hack from https://github.com/tqdm/tqdm/issues/485
print(' ', end='', flush=True)
for c0 in tqdm(chunk_start, desc=f'pool.map#{module:02d}', position=module):
chunk_dssc = np.s_[int(c0 * fpt):int((c0 + chunksize) * fpt)] # for dssc data
data = m[image_path][chunk_dssc].squeeze()
data = data.astype(np.float64)
n_trains = int(data.shape[0] // fpt)
trainIds_chunk = np.unique(trains_with_data[trains_start:trains_start + n_trains])
trains_start += n_trains
n_trains_actual = len(trainIds_chunk)
coords = {'trainId': trainIds_chunk}
data = np.reshape(data, [n_trains_actual, fpt, 128, 512])[:, :int(2 * nbunches)]
data = xr.DataArray(data, dims=['trainId', 'pulse', 'x', 'y'], coords=coords)
if do_pulse_mean:
data_pumped = (data[:, ::4]).mean('pulse')
data_unpumped = (data[:, 2::4]).mean('pulse')
else:
data_pumped = (data[:, ::4])
data_unpumped = (data[:, 2::4])
data = data_pumped.to_dataset(name='pumped')
data['unpumped'] = data_unpumped
data['sum_count'] = xr.full_like(data['unpumped'][..., 0, 0], fill_value=1)
# grouping and summing
data['scan_variable'] = scan # this only adds scan data for matching trainIds
data = data.dropna('trainId')
data = data.groupby('scan_variable').sum('trainId')
where = {'scan_variable': data.scan_variable}
for var in ['pumped', 'unpumped', 'sum_count']:
module_data[var].loc[where] = module_data[var].loc[where] + data[var]
for var in ['pumped', 'unpumped']:
module_data[var] = module_data[var] / module_data.sum_count
#module_data = module_data.drop('sum_count')
if not do_pulse_mean:
module_data = module_data.sum('scan_variable')
module_data = module_data.rename({'pulse':'scan_variable'})