Newer
Older
import multiprocessing
from time import strftime
import tempfile
import shutil
from tqdm.auto import tqdm
import os
import warnings
import karabo_data as kd
from karabo_data.geometry2 import DSSC_1MGeometry
import ToolBox as tb
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
import h5py
class DSSC:
def __init__(self, semester, proposal, topic='SCS'):
""" Create a DSSC object to process DSSC data.
inputs:
semester: semester string
proposal: proposal number string
topic: topic, by default SCS
"""
self.semester = semester
self.proposal = proposal
self.topic = topic
self.tempdir = None
self.save_folder = f'/gpfs/exfel/exp/{self.topic}/{self.semester}/{self.proposal}/usr/condensed_runs/'
print('DSSC configuration')
print(f'Topic: {self.topic}')
print(f'Semester: {self.semester}')
print(f'Proposal: {self.proposal}')
print(f'Default save folder: {self.save_folder}')
if not os.path.exists(self.save_folder):
warnings.warn(f'Default save folder does not exist: {self.save_folder}')
def __del__(self):
# deleting temporay folder
if self.tempdir:
shutil.rmtree(self.tempdir)
def open_run(self, run_nr, isDark=False):
""" Open a run with karabo-data and prepare the virtual dataset for multiprocessing
inputs:
run_nr: the run number
isDark: a boolean to specify if the run is a dark run or not
"""
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
print('Opening run data with karabo-data')
self.run_nr = run_nr
self.xgm = None
self.scan_vname = None
self.run = kd.open_run(self.proposal, self.run_nr)
self.isDark = isDark
self.plot_title = f'{self.semester} run: {self.run_nr}'
self.fpt = self.run.detector_info('SCS_DET_DSSC1M-1/DET/0CH0:xtdf')['frames_per_train']
self.nbunches = self.run.get_array('SCS_RR_UTC/MDL/BUNCH_DECODER', 'sase3.nPulses.value')
self.nbunches = np.unique(self.nbunches)
if len(self.nbunches) == 1:
self.nbunches = self.nbunches[0]
else:
warnings.warn('not all trains have same length DSSC data')
print(f'nbunches: {self.nbunches}')
self.nbunches = self.nbunches[-1]
print(f'DSSC frames per train: {self.fpt}')
print(f'SA3 bunches per train: {self.nbunches}')
if self.tempdir is not None:
shutil.rmtree(self.tempdir)
self.tempdir = tempfile.mkdtemp()
print(f'Temporary directory: {self.tempdir}')
print('Creating virtual dataset')
self.vdslist = self.create_virtual_dssc_datasets(self.run, path=self.tempdir)
# create a dummy scan variable for dark run
# for other type or run, use DSSC.define_run function to overwrite it
self.scan = xr.DataArray(np.ones_like(self.run.train_ids), dims=['trainId'],
coords={'trainId': self.run.train_ids})
self.scan_vname = 'dummy'
self.vds_scan = None
def define_scan(self, vname, bins):
"""
Prepare the binning of the DSSC data.
inputs:
vname: variable name for the scan, can be a mnemonic string from ToolBox
or a dictionnary with ['source', 'key'] fields
bins: step size (or bins_edge but not yet implemented)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
if type(vname) is dict:
self.scan = self.run.get_array(vname['source'], vname['key'])
elif type(vname) is str:
if vname not in tb.mnemonics:
raise ValueError(f'{vname} not found in the ToolBox mnemonics table')
self.scan = self.run.get_array(tb.mnemonics[vname]['source'], tb.mnemonics[vname]['key'])
else:
raise ValueError(f'vname should be a string or a dict. We got {type(vname)}')
if (type(bins) is int) or (type(bins) is float):
self.scan = bins * np.round(self.scan / bins)
else:
# TODO: digitize the data
raise ValueError(f'To be implemented')
self.scan_vname = vname
self.vds_scan = os.path.join(self.tempdir, 'scan_variable.h5')
if os.path.isfile(self.vds_scan):
os.remove(self.vds_scan)
self.scan = self.scan.to_dataset(name='scan_variable')
self.scan['xgm_pumped'] = self.xgm[:, :self.nbunches:2].mean('dim_0')
self.scan['xgm_unpumped'] = self.xgm[:, 1:self.nbunches:2].mean('dim_0')
self.scan.to_netcdf(self.vds_scan, group='data')
self.scan_counts = xr.DataArray(np.ones(len(self.scan['scan_variable'])),
dims=['scan_variable'],
coords={'scan_variable': self.scan['scan_variable'].values},
name='counts')
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=[5, 5])
ax1.plot(self.scan.groupby('scan_variable').mean('trainId').coords['scan_variable'].values,
self.scan_counts.groupby('scan_variable').sum(),
'o-', ms=2)
ax1.set_xlabel('scan variable')
ax1.set_ylabel('# trains')
ax1.set_title(self.plot_title)
ax2.plot(self.scan['scan_variable'])
ax2.set_xlabel('train #')
ax2.set_ylabel(f'{vname}')
plt.tight_layout()
def load_xgm(self):
""" Loads pulse resolved dedicated SAS3 data from the SCS XGM.
"""
if self.xgm is None:
self.xgm = self.run.get_array(tb.mnemonics['SCS_SA3']['source'],
tb.mnemonics['SCS_SA3']['key'], roi=kd.by_index[:self.nbunches])
def plot_xgm_hist(self, nbins=100):
""" Plots an histogram of the SCS XGM dedicated SAS3 data.
inputs:
nbins: number of the bins for the histogram.
"""
if self.xgm is None:
self.load_xgm()
hist, bins_edges = np.histogram(self.xgm, nbins, density=True)
width = 1.0 * (bins_edges[1] - bins_edges[0])
bins_center = 0.5*(bins_edges[:-1] + bins_edges[1:])
plt.figure(figsize=(5,3))
plt.bar(bins_center, hist, align='center', width=width)
plt.xlabel(f"{tb.mnemonics['SCS_SA3']['source']}{tb.mnemonics['SCS_SA3']['key']}")
plt.ylabel('density')
plt.title(self.plot_title)
plt.tight_layout()
def xgm_filter(self, xgm_low=-np.inf, xgm_high=np.inf):
""" Filters the data by train. If one pulse within a train has an SASE3 SCS XGM value below
xgm_low or above xgm_high, that train will be dropped from the dataset.
inputs:
xgm_low: low threshold value
xgm_high: high threshold value
"""
if self.xgm is None:
self.load_xgm()
if self.isDark:
warnings.warn(f'This run was loaded as dark. Filtering on xgm makes no sense. Aborting')
return
self.xgm_low = xgm_low
self.xgm_high = xgm_high
valid = ((self.xgm > self.xgm_low) * (self.xgm < self.xgm_high)).prod('dim_0').astype(bool)
xgm_valid = self.xgm.where(valid)
xgm_valid = xgm_valid.dropna('trainId')
self.scan = self.scan.sel({'trainId': xgm_valid.trainId})
nrejected = len(self.run.train_ids) - len(self.scan)
print((f'Rejecting {nrejected} out of {len(self.run.train_ids)} trains due to xgm '
f'thresholds: [{self.xgm_low}, {self.xgm_high}]'))
def load_geom(self):
""" Loads and return the DSSC geometry.
"""
quad_pos = [
(-124.100, 3.112), # TR
(-133.068, -110.604), # BR
( 0.988, -125.236), # BL
( 4.528, -4.912) # TL
]
path = '/gpfs/exfel/sw/software/exfel_environments/misc/git/karabo_data/docs/dssc_geo_june19.h5'
geom = DSSC_1MGeometry.from_h5_file_and_quad_positions(path, quad_pos)
return geom
def create_virtual_dssc_datasets(self, run, path=''):
""" Create virtual datasets for each 16 DSSC modules used for the multiprocessing.
input:
run: karabo-data run
path: string where the virtual files are created
"""
vds_list = []
for m in tqdm(range(16)):
vds_filename = os.path.join(path, f'dssc{m}_vds.h5')
if os.path.isfile(vds_filename):
os.remove(vds_filename)
module_vds = run.get_virtual_dataset(f'SCS_DET_DSSC1M-1/DET/{m}CH0:xtdf',
'image.data', filename=vds_filename)
vds_list.append([vds_filename, module_vds])
return vds_list
def crunch(self):
""" Crunch through the DSSC data using multiprocessing.
"""
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
if self.vds_scan is None:
# probably a dark run with a dummy scan variable
self.vds_scan = os.path.join(self.tempdir, 'scan_variable.h5')
if os.path.isfile(self.vds_scan):
os.remove(self.vds_scan)
self.scan = self.scan.to_dataset(name='scan_variable')
self.scan.to_netcdf(self.vds_scan, group='data')
max_GB = 400
# max_GB / (8byte * 16modules * 128px * 512px * N_pulses)
self.chunksize = int(max_GB * 1024**3 // (8 * 16 * 128 * 512 * self.fpt))
print('processing', self.chunksize, 'trains per chunk')
jobs = []
for m in range(16):
jobs.append(dict(
module=m,
fpt=self.fpt,
vdf_module=os.path.join(self.tempdir, f'dssc{m}_vds.h5'),
chunksize=self.chunksize,
vdf_scan=self.vds_scan,
nbunches=self.nbunches,
run_nr=self.run_nr,
))
timestamp = strftime('%X')
print(f'start time: {timestamp}')
with multiprocessing.Pool(16) as pool:
module_data = pool.map(process_one_module, jobs)
print('finished:', strftime('%X'))
# rearange the multiprocessed data
self.module_data = xr.concat(module_data, dim='module')
self.module_data['run'] = self.run_nr
self.module_data = self.module_data.transpose('scan_variable', 'module', 'x', 'y')
self.module_data = xr.merge([self.module_data, self.scan.groupby('scan_variable').mean('trainId')])
self.module_data = self.module_data.squeeze()
def save(self, save_folder=None, overwrite=False):
""" Save the crunched data.
inputs:
save_folder: string of the fodler where to save the data.
overwrite: boolean whether or not to overwrite existing files.
"""
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
if save_folder is None:
save_folder = this.save_folder
if self.isDark:
fname = f'run{self.run_nr}_el.h5' # no scan
else:
fname = f'run{self.run_nr}_by-delay_el.h5' # run with delay scan (change for other scan types!)
save_path = os.path.join(save_folder, fname)
file_exists = os.path.isfile(save_path)
if not file_exists or (file_exists and overwrite):
if file_exists:
warnings.warn(f'Overwriting file: {save_path}')
os.remove(save_path)
self.module_data.to_netcdf(save_path, group='data')
os.chmod(save_path, 0o664)
print('saving: ', save_path)
else:
print('file', save_path, 'exists and overwrite is False')
# since 'self' is not pickable, this function has to be outside the DSSC class so that it can be used
# by the multiprocessing pool.map function
def process_one_module(job):
module = job['module']
fpt = job['fpt']
data_vdf = job['vdf_module']
scan_vdf = job['vdf_scan']
chunksize = job['chunksize']
nbunches = job['nbunches']
image_path = f'INSTRUMENT/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/data'
npulse_path = f'INDEX/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/count'
with h5py.File(data_vdf, 'r') as m:
all_trainIds = m['INDEX/trainId'][()]
n_trains = len(all_trainIds)
chunk_start = np.arange(n_trains, step=chunksize, dtype=int)
# load scan variable
scan = xr.open_dataset(scan_vdf, group='data')['scan_variable']
scan.name = 'scan'
len_scan = len(scan.groupby(scan))
# create empty dataset to add actual data to
module_data = xr.DataArray(np.empty([len_scan, 128, 512], dtype=np.float64),
dims=['scan_variable', 'x', 'y'],
coords={'scan_variable': np.unique(scan)})
module_data = module_data.to_dataset(name='pumped')
module_data['unpumped'] = xr.full_like(module_data['pumped'], 0)
module_data['sum_count'] = xr.DataArray(np.zeros_like(np.unique(scan)), dims=['scan_variable'])
module_data['module'] = module
# crunching
with h5py.File(data_vdf, 'r') as m:
#fpt_calc = int(len(m[image_path]) / n_trains)
#assert fpt_calc == fpt, f'data length does not match expected value (module {module})'
all_trainIds = m['INDEX/trainId'][()]
frames_per_train = m[npulse_path][()]
trains_with_data = all_trainIds[frames_per_train == fpt]
#print(np.unique(pulses_per_train), '/', fpt)
#print(len(trains_with_data))
chunk_start = np.arange(len(all_trainIds), step=chunksize, dtype=int)
trains_start = 0
# This line is the strange hack from https://github.com/tqdm/tqdm/issues/485
print(' ', end='', flush=True)
for c0 in tqdm(chunk_start, desc=f'pool.map#{module:02d}', position=module):
chunk_dssc = np.s_[int(c0 * fpt):int((c0 + chunksize) * fpt)] # for dssc data
data = m[image_path][chunk_dssc].squeeze()
data = data.astype(np.float64)
n_trains = int(data.shape[0] // fpt)
trainIds_chunk = np.unique(trains_with_data[trains_start:trains_start + n_trains])
trains_start += n_trains
n_trains_actual = len(trainIds_chunk)
coords = {'trainId': trainIds_chunk}
data = np.reshape(data, [n_trains_actual, fpt, 128, 512])[:, :int(2 * nbunches)]
data = xr.DataArray(data, dims=['trainId', 'pulse', 'x', 'y'], coords=coords)
data_pumped = (data[:, ::4]).mean('pulse')
data_unpumped = (data[:, 2::4]).mean('pulse')
data = data_pumped.to_dataset(name='pumped')
data['unpumped'] = data_unpumped
data['sum_count'] = xr.DataArray(np.ones(n_trains_actual), dims=['trainId'], coords=coords)
# grouping and summing
data['scan_variable'] = scan # this only adds scan data for matching trainIds
data = data.dropna('trainId')
data = data.groupby('scan_variable').sum('trainId')
where = {'scan_variable': data.scan_variable}
for var in ['pumped', 'unpumped', 'sum_count']:
module_data[var].loc[where] = module_data[var].loc[where] + data[var]
for var in ['pumped', 'unpumped']:
module_data[var] = module_data[var] / module_data.sum_count
#module_data = module_data.drop('sum_count')
return module_data