Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pes_to_spec
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Machine Learning projects.
pes_to_spec
Commits
b695793c
Commit
b695793c
authored
2 years ago
by
Danilo Ferreira de Lima
Browse files
Options
Downloads
Patches
Plain Diff
Draft.
parent
5f1f7bd1
No related branches found
No related tags found
1 merge request
!3
Added kernel approximation with the Nystroem sub-space projection method as an alternative
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pes_to_spec/model.py
+32
-16
32 additions, 16 deletions
pes_to_spec/model.py
with
32 additions
and
16 deletions
pes_to_spec/model.py
+
32
−
16
View file @
b695793c
...
@@ -8,11 +8,12 @@ from autograd import grad
...
@@ -8,11 +8,12 @@ from autograd import grad
from
scipy.signal
import
fftconvolve
from
scipy.signal
import
fftconvolve
from
scipy.signal
import
find_peaks_cwt
from
scipy.signal
import
find_peaks_cwt
from
scipy.optimize
import
fmin_l_bfgs_b
from
scipy.optimize
import
fmin_l_bfgs_b
from
sklearn.decomposition
import
KernelPCA
,
PCA
from
sklearn.decomposition
import
PCA
from
sklearn.pipeline
import
Pipeline
,
FeatureUnion
from
sklearn.pipeline
import
Pipeline
,
FeatureUnion
from
sklearn.base
import
TransformerMixin
,
BaseEstimator
from
sklearn.base
import
TransformerMixin
,
BaseEstimator
from
sklearn.base
import
RegressorMixin
from
sklearn.base
import
RegressorMixin
from
sklearn.kernel_approximation
import
Nystroem
from
sklearn.kernel_approximation
import
Nystroem
from
sklearn.linear_model
import
Ridge
from
itertools
import
product
from
itertools
import
product
from
sklearn.model_selection
import
train_test_split
from
sklearn.model_selection
import
train_test_split
...
@@ -264,8 +265,13 @@ class SelectRelevantLowResolution(TransformerMixin, BaseEstimator):
...
@@ -264,8 +265,13 @@ class SelectRelevantLowResolution(TransformerMixin, BaseEstimator):
class
FitModel
(
RegressorMixin
,
BaseEstimator
):
class
FitModel
(
RegressorMixin
,
BaseEstimator
):
"""
"""
Linear regression model with uncertainties.
Linear regression model with uncertainties.
Args:
l: Regularization coefficient.
"""
"""
def
__init__
(
self
):
def
__init__
(
self
,
l
:
float
=
1e-6
):
self
.
l
=
l
# model parameter sizes
# model parameter sizes
self
.
Nx
:
int
=
0
self
.
Nx
:
int
=
0
self
.
Ny
:
int
=
0
self
.
Ny
:
int
=
0
...
@@ -305,10 +311,11 @@ class FitModel(RegressorMixin, BaseEstimator):
...
@@ -305,10 +311,11 @@ class FitModel(RegressorMixin, BaseEstimator):
# initial parameter values
# initial parameter values
A0
:
np
.
ndarray
=
np
.
eye
(
self
.
Nx
,
self
.
Ny
).
reshape
(
self
.
Nx
*
self
.
Ny
)
A0
:
np
.
ndarray
=
np
.
eye
(
self
.
Nx
,
self
.
Ny
).
reshape
(
self
.
Nx
*
self
.
Ny
)
Aeps
:
np
.
ndarray
=
np
.
zeros
(
self
.
Nx
)
#
Aeps: np.ndarray = np.zeros(self.Nx)
b0
:
np
.
ndarray
=
np
.
zeros
(
self
.
Ny
)
b0
:
np
.
ndarray
=
np
.
zeros
(
self
.
Ny
)
u0
:
np
.
ndarray
=
np
.
zeros
(
self
.
Ny
)
u0
:
np
.
ndarray
=
-
2
*
np
.
ones
(
self
.
Ny
)
x0
:
np
.
ndarray
=
np
.
concatenate
((
A0
,
b0
,
u0
,
Aeps
),
axis
=
0
)
#x0: np.ndarray = np.concatenate((A0, b0, u0, Aeps), axis=0)
x0
:
np
.
ndarray
=
np
.
concatenate
((
A0
,
b0
,
u0
),
axis
=
0
)
# reset loss monitoring
# reset loss monitoring
self
.
loss_train
:
List
[
float
]
=
list
()
self
.
loss_train
:
List
[
float
]
=
list
()
...
@@ -330,13 +337,20 @@ class FitModel(RegressorMixin, BaseEstimator):
...
@@ -330,13 +337,20 @@ class FitModel(RegressorMixin, BaseEstimator):
b
=
x
[
self
.
Nx
*
self
.
Ny
:(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
)].
reshape
((
1
,
self
.
Ny
))
b
=
x
[
self
.
Nx
*
self
.
Ny
:(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
)].
reshape
((
1
,
self
.
Ny
))
b_eps
=
x
[(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
):(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
+
self
.
Ny
)].
reshape
((
1
,
self
.
Ny
))
b_eps
=
x
[(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
):(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
+
self
.
Ny
)].
reshape
((
1
,
self
.
Ny
))
A_eps
=
x
[(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
+
self
.
Ny
):].
reshape
((
self
.
Nx
,
1
))
#A_eps = x[(self.Nx*self.Ny+self.Ny+self.Ny):].reshape((self.Nx, 1))
log_unc
=
X
@
A_eps
+
b_eps
#log_unc = anp.matmul(X, A_eps) + b_eps
log_unc
=
b_eps
#log_unc = anp.log(anp.exp(log_unc) + anp.exp(log_eps))
#log_unc = anp.log(anp.exp(log_unc) + anp.exp(log_eps))
iunc2
=
anp
.
exp
(
-
2
*
log_unc
)
iunc2
=
anp
.
exp
(
-
2
*
log_unc
)
return
anp
.
mean
(
(
0.5
*
((
X
@
A
+
b
-
Y
)
**
2
)
*
iunc2
+
log_unc
).
sum
(
axis
=
1
),
axis
=
0
)
# Put RELU on (XX@x) and introduce new matrix W
L
=
anp
.
mean
(
(
0.5
*
((
anp
.
matmul
(
X
,
A
)
+
b
-
Y
)
**
2
)
*
iunc2
+
log_unc
).
sum
(
axis
=
1
),
axis
=
0
)
weights2
=
(
anp
.
sum
(
anp
.
square
(
A
.
ravel
()))
#+ anp.sum(anp.square(b.ravel()))
#+ anp.sum(anp.square(A_eps.ravel()))
#+ anp.sum(anp.square(b_eps.ravel()))
)
return
L
+
self
.
l
/
2
*
weights2
def
loss_history
(
x
:
np
.
ndarray
)
->
float
:
def
loss_history
(
x
:
np
.
ndarray
)
->
float
:
"""
"""
...
@@ -372,14 +386,14 @@ class FitModel(RegressorMixin, BaseEstimator):
...
@@ -372,14 +386,14 @@ class FitModel(RegressorMixin, BaseEstimator):
grad_loss
,
grad_loss
,
disp
=
True
,
disp
=
True
,
factr
=
1e7
,
factr
=
1e7
,
maxiter
=
100
0
,
maxiter
=
100
,
iprint
=
0
)
iprint
=
0
)
# Inference
# Inference
self
.
A_inf
=
sc_op
[
0
][:
self
.
Nx
*
self
.
Ny
].
reshape
(
self
.
Nx
,
self
.
Ny
)
self
.
A_inf
=
sc_op
[
0
][:
self
.
Nx
*
self
.
Ny
].
reshape
(
self
.
Nx
,
self
.
Ny
)
self
.
b_inf
=
sc_op
[
0
][
self
.
Nx
*
self
.
Ny
:(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
)].
reshape
(
1
,
self
.
Ny
)
self
.
b_inf
=
sc_op
[
0
][
self
.
Nx
*
self
.
Ny
:(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
)].
reshape
(
1
,
self
.
Ny
)
self
.
u_inf
=
sc_op
[
0
][(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
):(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
+
self
.
Ny
)].
reshape
(
1
,
self
.
Ny
)
# removed np.exp
self
.
u_inf
=
sc_op
[
0
][(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
):(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
+
self
.
Ny
)].
reshape
(
1
,
self
.
Ny
)
# removed np.exp
self
.
A_eps
=
sc_op
[
0
][(
self
.
Nx
*
self
.
Ny
+
self
.
Ny
+
self
.
Ny
):].
reshape
(
self
.
Nx
,
1
)
#
self.A_eps = sc_op[0][(self.Nx*self.Ny+self.Ny+self.Ny):].reshape(self.Nx, 1)
def
as_dict
(
self
)
->
Dict
[
str
,
Any
]:
def
as_dict
(
self
)
->
Dict
[
str
,
Any
]:
"""
"""
...
@@ -393,7 +407,7 @@ class FitModel(RegressorMixin, BaseEstimator):
...
@@ -393,7 +407,7 @@ class FitModel(RegressorMixin, BaseEstimator):
A_inf
=
self
.
A_inf
,
A_inf
=
self
.
A_inf
,
b_inf
=
self
.
b_inf
,
b_inf
=
self
.
b_inf
,
u_inf
=
self
.
u_inf
,
u_inf
=
self
.
u_inf
,
A_eps
=
self
.
A_eps
,
#
A_eps=self.A_eps,
loss_train
=
self
.
loss_train
,
loss_train
=
self
.
loss_train
,
loss_test
=
self
.
loss_test
,
loss_test
=
self
.
loss_test
,
Nx
=
self
.
Nx
,
Nx
=
self
.
Nx
,
...
@@ -409,7 +423,7 @@ class FitModel(RegressorMixin, BaseEstimator):
...
@@ -409,7 +423,7 @@ class FitModel(RegressorMixin, BaseEstimator):
self
.
A_inf
=
in_dict
[
"
A_inf
"
]
self
.
A_inf
=
in_dict
[
"
A_inf
"
]
self
.
b_inf
=
in_dict
[
"
b_inf
"
]
self
.
b_inf
=
in_dict
[
"
b_inf
"
]
self
.
u_inf
=
in_dict
[
"
u_inf
"
]
self
.
u_inf
=
in_dict
[
"
u_inf
"
]
self
.
A_eps
=
in_dict
[
"
A_eps
"
]
#
self.A_eps = in_dict["A_eps"]
self
.
loss_train
=
in_dict
[
"
loss_train
"
]
self
.
loss_train
=
in_dict
[
"
loss_train
"
]
self
.
loss_test
=
in_dict
[
"
loss_test
"
]
self
.
loss_test
=
in_dict
[
"
loss_test
"
]
self
.
Nx
=
in_dict
[
"
Nx
"
]
self
.
Nx
=
in_dict
[
"
Nx
"
]
...
@@ -432,7 +446,8 @@ class FitModel(RegressorMixin, BaseEstimator):
...
@@ -432,7 +446,8 @@ class FitModel(RegressorMixin, BaseEstimator):
# flat uncertainty
# flat uncertainty
result
[
"
Y_unc
"
]
=
self
.
u_inf
[
0
,:]
result
[
"
Y_unc
"
]
=
self
.
u_inf
[
0
,:]
# input-dependent uncertainty
# input-dependent uncertainty
result
[
"
Y_eps
"
]
=
np
.
exp
(
X
@
self
.
A_eps
+
result
[
"
Y_unc
"
])
#result["Y_eps"] = np.exp(X @ self.A_eps + result["Y_unc"])
result
[
"
Y_eps
"
]
=
np
.
exp
(
result
[
"
Y_unc
"
])
return
result
return
result
...
@@ -460,12 +475,12 @@ class Model(TransformerMixin, BaseEstimator):
...
@@ -460,12 +475,12 @@ class Model(TransformerMixin, BaseEstimator):
channels
:
List
[
str
]
=
[
f
"
channel_
{
j
}
_
{
k
}
"
channels
:
List
[
str
]
=
[
f
"
channel_
{
j
}
_
{
k
}
"
for
j
,
k
in
product
(
range
(
1
,
5
),
[
"
A
"
,
"
B
"
,
"
C
"
,
"
D
"
])],
for
j
,
k
in
product
(
range
(
1
,
5
),
[
"
A
"
,
"
B
"
,
"
C
"
,
"
D
"
])],
n_pca_lr
:
int
=
600
,
n_pca_lr
:
int
=
600
,
n_pca_hr
:
int
=
2
0
,
n_pca_hr
:
int
=
10
0
,
high_res_sigma
:
float
=
0.2
,
high_res_sigma
:
float
=
0.2
,
tof_start
:
Optional
[
int
]
=
None
,
tof_start
:
Optional
[
int
]
=
None
,
delta_tof
:
Optional
[
int
]
=
300
,
delta_tof
:
Optional
[
int
]
=
300
,
validation_size
:
float
=
0.05
,
validation_size
:
float
=
0.05
,
n_nonlinear_kernel
:
int
=
2
000
):
n_nonlinear_kernel
:
int
=
10
000
):
# models
# models
self
.
x_model
=
Pipeline
([
self
.
x_model
=
Pipeline
([
(
'
select
'
,
SelectRelevantLowResolution
(
channels
,
tof_start
,
delta_tof
)),
(
'
select
'
,
SelectRelevantLowResolution
(
channels
,
tof_start
,
delta_tof
)),
...
@@ -479,7 +494,8 @@ class Model(TransformerMixin, BaseEstimator):
...
@@ -479,7 +494,8 @@ class Model(TransformerMixin, BaseEstimator):
])
])
fit_steps
=
list
()
fit_steps
=
list
()
if
n_nonlinear_kernel
>
0
:
if
n_nonlinear_kernel
>
0
:
fit_steps
+=
[(
'
fex
'
,
Nystroem
(
n_components
=
n_nonlinear_kernel
,
kernel
=
'
laplacian
'
,
gamma
=
1.0
,
n_jobs
=-
1
))]
fit_steps
+=
[(
'
fex
'
,
Nystroem
(
n_components
=
n_nonlinear_kernel
,
kernel
=
'
rbf
'
,
gamma
=
0.5
,
n_jobs
=-
1
))]
#fit_steps += [('regression', (Ridge(alpha=0.1)))]
fit_steps
+=
[(
'
regression
'
,
FitModel
())]
fit_steps
+=
[(
'
regression
'
,
FitModel
())]
self
.
fit_model
=
Pipeline
(
fit_steps
)
self
.
fit_model
=
Pipeline
(
fit_steps
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment