Newer
Older
# -*- coding: utf-8 -*-
""" Toolbox for SCS.
Various utilities function to quickly process data measured at the SCS instruments.
Copyright (2019) SCS Team.
"""
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
from scipy.signal import find_peaks
Laurent Mercadier
committed
import ToolBox as tb
Mercadier
committed
def cleanXGMdata(data, npulses=None, sase3First=True):
''' Cleans the XGM data arrays obtained from load() function.
The XGM "TD" data arrays have arbitrary size of 1000 and default value 1.0
when there is no pulse. This function sorts the SASE 1 and SASE 3 pulses.
For DAQ runs after April 2019, sase-resolved arrays can be used. For older runs,
the function selectSASEinXGM is used to extract sase-resolved pulses.
Mercadier
committed
Inputs:
data: xarray Dataset containing XGM TD arrays.
npulses: number of pulses, needed if pulse pattern not available.
sase3First: bool, needed if pulse pattern not available.
Output:
xarray Dataset containing sase- and pulse-resolved XGM data, with
dimension names 'sa1_pId' and 'sa3_pId'
'''
dropList = []
mergeList = []
if 'sase3' in data:
if np.all(data['npulses_sase1'].where(data['npulses_sase3'] !=0,
drop=True) == 0):
print('Dedicated trains, skip loading SASE 1 data.')
load_sa1 = False
else:
print('Missing bunch pattern info!')
if npulses is None:
raise TypeError('npulses argument is required when bunch pattern ' +
'info is missing.')
#pulse-resolved signals from XGMs
keys = ["XTD10_XGM", "XTD10_SA3", "XTD10_SA1",
"XTD10_XGM_sigma", "XTD10_SA3_sigma", "XTD10_SA1_sigma",
"SCS_XGM", "SCS_SA3", "SCS_SA1",
"SCS_XGM_sigma", "SCS_SA3_sigma", "SCS_SA1_sigma"]
for whichXgm in ['SCS', 'XTD10']:
load_sa1 = True
if (f"{whichXgm}_SA3" not in data and f"{whichXgm}_XGM" in data):
#no SASE-resolved arrays available
if not 'sase3' in data:
npulses_xgm = data[f'{whichXgm}_XGM'].where(data[f'{whichXgm}_XGM'], drop=True).shape[1]
npulses_sa1 = npulses_xgm - npulses
if npulses_sa1==0:
load_sa1 = False
if npulses_sa1 < 0:
raise ValueError(f'npulses = {npulses} is larger than the total number'
+f' of pulses per train = {npulses_xgm}')
sa3 = selectSASEinXGM(data, xgm=f'{whichXgm}_XGM', sase='sase3', npulses=npulses,
sase3First=sase3First).rename({'XGMbunchId':'sa3_pId'}).rename(f"{whichXgm}_SA3")
mergeList.append(sa3)
if f"{whichXgm}_XGM_sigma" in data:
sa3_sigma = selectSASEinXGM(data, xgm=f'{whichXgm}_XGM_sigma', sase='sase3', npulses=npulses,
sase3First=sase3First).rename({'XGMbunchId':'sa3_pId'}).rename(f"{whichXgm}_SA3_sigma")
mergeList.append(sa3_sigma)
dropList.append(f'{whichXgm}_XGM_sigma')
if load_sa1:
sa1 = selectSASEinXGM(data, xgm=f'{whichXgm}_XGM', sase='sase1',
npulses=npulses_sa1, sase3First=sase3First).rename(
{'XGMbunchId':'sa1_pId'}).rename(f"{whichXgm}_SA1")
mergeList.append(sa1)
if f"{whichXgm}_XGM_sigma" in data:
sa1_sigma = selectSASEinXGM(data, xgm=f'{whichXgm}_XGM_sigma', sase='sase1', npulses=npulses_sa1,
sase3First=sase3First).rename({'XGMbunchId':'sa1_pId'}).rename(f"{whichXgm}_SA1_sigma")
mergeList.append(sa1_sigma)
dropList.append(f'{whichXgm}_XGM')
keys.remove(f'{whichXgm}_XGM')
Mercadier
committed
for key in keys:
if key not in data:
continue
if "sa3" in key.lower():
sase = 'sa3_'
elif "sa1" in key.lower():
sase = 'sa1_'
Mercadier
committed
else:
dropList.append(key)
continue
res = data[key].where(data[key] != 1.0, drop=True).rename(
{'XGMbunchId':'{}pId'.format(sase)}).rename(key)
res = res.assign_coords(
{f'{sase}pId':np.arange(res[f'{sase}pId'].shape[0])})
Mercadier
committed
dropList.append(key)
mergeList.append(res)
mergeList.append(data.drop(dropList))
for k in data.attrs.keys():
subset.attrs[k] = data.attrs[k]
Mercadier
committed
return subset
def selectSASEinXGM(data, sase='sase3', xgm='SCS_XGM', sase3First=True, npulses=None):
''' Given an array containing both SASE1 and SASE3 data, extracts SASE1-
or SASE3-only XGM data. The function tracks the changes of bunch patterns
in sase 1 and sase 3 and applies a mask to the XGM array to extract the
relevant pulses. This way, all complicated patterns are accounted for.
Inputs:
data: xarray Dataset containing xgm data
sase: key of sase to select: {'sase1', 'sase3'}
xgm: key of xgm to select: {'XTD10_XGM[_sigma]', 'SCS_XGM[_sigma]'}
sase3First: bool, optional. Used in case no bunch pattern was recorded
Laurent Mercadier
committed
npulses: int, optional. Required in case no bunch pattern was recorded.
Output:
DataArray that has all trainIds that contain a lasing
train in sase, with dimension equal to the maximum number of pulses of
that sase in the run. The missing values, in case of change of number of pulses,
are filled with NaNs.
'''
#1. case where bunch pattern is missing:
if sase not in data:
Laurent Mercadier
committed
print('Retrieving {} SASE {} pulses assuming that '.format(npulses, sase[4])
+'SASE {} pulses come first.'.format('3' if sase3First else '1'))
Laurent Mercadier
committed
#in older version of DAQ, non-data numbers were filled with 0.0.
xgmData = data[xgm].where(data[xgm]!=0.0, drop=True)
xgmData = xgmData.fillna(0.0).where(xgmData!=1.0, drop=True)
if (sase3First and sase=='sase3') or (not sase3First and sase=='sase1'):
return xgmData[:,:npulses].assign_coords(XGMbunchId=np.arange(npulses))
else:
if xr.ufuncs.isnan(xgmData).any():
raise Exception('The number of pulses changed during the run. '
'This is not supported yet.')
else:
start=xgmData.shape[1]-npulses
return xgmData[:,start:start+npulses].assign_coords(XGMbunchId=np.arange(npulses))
#2. case where bunch pattern is provided
#2.1 Merge sase1 and sase3 bunch patterns to get indices of all pulses
xgm_arr = data[xgm].where(data[xgm] != 1., drop=True)
sa3 = data['sase3'].where(data['sase3'] > 1, drop=True)
sa3_val=np.unique(sa3)
sa3_val = sa3_val[~np.isnan(sa3_val)]
sa1 = data['sase1'].where(data['sase1'] > 1, drop=True)
sa1_val=np.unique(sa1)
sa1_val = sa1_val[~np.isnan(sa1_val)]
sa_all = xr.concat([sa1, sa3], dim='bunchId').rename('sa_all')
sa_all = xr.DataArray(np.sort(sa_all)[:,:xgm_arr['XGMbunchId'].shape[0]],
dims=['trainId', 'bunchId'],
coords={'trainId':data.trainId},
name='sase_all')
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
idxListSase = np.unique(sa3)
newName = xgm.split('_')[0] + '_SA3'
else:
idxListSase = np.unique(sa1)
newName = xgm.split('_')[0] + '_SA1'
#2.2 track the changes of pulse patterns and the indices at which they occured (invAll)
idxListAll, invAll = np.unique(sa_all.fillna(-1), axis=0, return_inverse=True)
#2.3 define a mask, loop over the different patterns and update the mask for each pattern
mask = xr.DataArray(np.zeros((data.dims['trainId'], sa_all['bunchId'].shape[0]), dtype=bool),
dims=['trainId', 'XGMbunchId'],
coords={'trainId':data.trainId,
'XGMbunchId':sa_all['bunchId'].values},
name='mask')
big_sase = []
for i,idxXGM in enumerate(idxListAll):
mask.values = np.zeros(mask.shape, dtype=bool)
idxXGM = np.isin(idxXGM, idxListSase)
idxTid = invAll==i
mask[idxTid, idxXGM] = True
sa_arr = xgm_arr.where(mask, drop=True)
if sa_arr.trainId.size > 0:
sa_arr = sa_arr.assign_coords(XGMbunchId=np.arange(sa_arr.XGMbunchId.size))
big_sase.append(sa_arr)
if len(big_sase) > 0:
da_sase = xr.concat(big_sase, dim='trainId').rename(newName)
else:
da_sase = xr.DataArray([], dims=['trainId'], name=newName)
return da_sase
def saseContribution(data, sase='sase1', xgm='XTD10_XGM'):
''' Calculate the relative contribution of SASE 1 or SASE 3 pulses
for each train in the run. Supports fresh bunch, dedicated trains
and pulse on demand modes.
Inputs:
data: xarray Dataset containing xgm data
sase: key of sase for which the contribution is computed: {'sase1', 'sase3'}
xgm: key of xgm to select: {'XTD10_XGM', 'SCS_XGM'}
Output:
1D DataArray equal to sum(sase)/sum(sase1+sase3)
'''
xgm_sa1 = selectSASEinXGM(data, 'sase1', xgm=xgm)
xgm_sa3 = selectSASEinXGM(data, 'sase3', xgm=xgm)
#Fill missing train ids with 0
r = xr.align(*[xgm_sa1, xgm_sa3], join='outer', exclude=['XGMbunchId'])
xgm_sa1 = r[0].fillna(0)
xgm_sa3 = r[1].fillna(0)
contrib = xgm_sa1.sum(axis=1)/(xgm_sa1.sum(axis=1) + xgm_sa3.sum(axis=1))
if sase=='sase1':
return contrib
else:
return 1 - contrib
def calibrateXGMs(data, allPulses=False, plot=False, display=False):
Mercadier
committed
''' Calibrate the fast (pulse-resolved) signals of the XTD10 and SCS XGM
(read in intensityTD property) to the respective slow ion signal
(photocurrent read by Keithley, key 'pulseEnergy.photonFlux.value').
If the sase-resolved averaged signals ("slowTrain", introduced in May
2019) are recorded, the calibration is defined as the mean ratio
between the photonFlux and the slowTrain signal. Otherwise, the
averaged fast signals are computed using a rolling average.
Inputs:
data: xarray Dataset
allPulses: if True, uses "XTD10_XGM" and "SCS_XGM" arrays and
computes the relative contributions of SASE1 and SASE3 to
photonFlux. This should be more accurate in cases where the
number of SASE1 pulses is large and/or the SASE1 pulse
intensity cannot be neglected.
plot: bool, plot the calibration output
display: bool, displays info if True
Mercadier
committed
ndarray with [XTD10 calibration factor, SCS calibration factor]
if allPulses:
return calibrateXGMsFromAllPulses(data, plot)
hasSlowTrain=[True,True]
results = np.array([np.nan, np.nan], dtype=float)
for i,whichXgm in enumerate(['XTD10', 'SCS']):
#1. Try to load fast data averages (in DAQ since May 2019)
if f'{whichXgm}_slowTrain' in data:
if display:
print(f'Using fast data averages (slowTrain) for {whichXgm}')
slowTrainData.append(data[f'{whichXgm}_slowTrain'])
else:
mnemo = tb.mnemonics[f'{whichXgm}_slowTrain']
if mnemo['key'] in data.attrs['run'].keys_for_source(mnemo['source']):
if display:
print(f'Using fast data averages (slowTrain) for {whichXgm}')
slowTrainData.append(data.attrs['run'].get_array(mnemo['source'], mnemo['key']))
#2. Calculate fast data average from fast data
else:
if display:
print(f'No averages of fast data (slowTrain) available for {whichXgm}.'+
' Attempting calibration from fast data.')
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
if f'{whichXgm}_SA3' in data:
if display:
print(f'Calculating slowTrain from SA3 for {whichXgm}')
slowTrainData.append(data[f'{whichXgm}_SA3'].rolling(trainId=200
).mean().mean(axis=1))
elif f'{whichXgm}_XGM' in data:
sa3 = selectSASEinXGM(data, xgm=f'{whichXgm}_XGM')
slowTrainData.append(sa3.rolling(trainId=200).mean().mean(axis=1))
else:
hasSlowTrain[i]=False
if hasSlowTrain[i]:
results[i] = np.mean(data[f'{whichXgm}_photonFlux']/slowTrainData[i])
if display:
print(f'Calibration factor {whichXgm} XGM: {results[i]}')
if plot:
plt.figure(figsize=(8,4))
plt.subplot(211)
plt.plot(data['XTD10_photonFlux'], label='XTD10 photon flux')
plt.plot(slowTrainData[0]*results[0], label='calibrated XTD10 fast signal')
plt.ylabel(r'Energy [$\mu$J]')
plt.legend(fontsize=8, loc='upper left')
plt.twinx()
plt.plot(slowTrainData[0], label='uncalibrated XTD10 fast signal', color='C4')
plt.ylabel(r'Uncalibrated energy')
plt.legend(fontsize=8, loc='upper right')
plt.subplot(212)
plt.plot(data['SCS_photonFlux'], label='SCS photon flux')
plt.plot(slowTrainData[1]*results[1], label='calibrated SCS fast signal')
plt.ylabel(r'Energy [$\mu$J]')
plt.xlabel('train Id')
plt.legend(fontsize=8, loc='upper left')
plt.twinx()
plt.plot(slowTrainData[1], label='uncalibrated SCS fast signal', color='C4')
plt.ylabel(r'Uncalibrated energy')
plt.legend(fontsize=8, loc='upper right')
plt.tight_layout()
return results
Mercadier
committed
def calibrateXGMsFromAllPulses(data, plot=False):
''' Calibrate the fast (pulse-resolved) signals of the XTD10 and SCS XGM
(read in intensityTD property) to the respective slow ion signal
(photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value').
One has to take into account the possible signal created by SASE1 pulses. In the
tunnel, this signal is usually large enough to be read by the XGM and the relative
contribution C of SASE3 pulses to the overall signal is computed.
In the tunnel, the calibration F is defined as:
F = E_slow / E_fast_avg, where
E_fast_avg is the rolling average (with window rollingWindow) of the fast signal.
In SCS XGM, the signal from SASE1 is usually in the noise, so we calculate the
average over the pulse-resolved signal of SASE3 pulses only and calibrate it to the
slow signal modulated by the SASE3 contribution:
F = (N1+N3) * E_avg * C/(N3 * E_fast_avg_sase3), where N1 and N3 are the number
of pulses in SASE1 and SASE3, E_fast_avg_sase3 is the rolling average (with window
rollingWindow) of the SASE3-only fast signal.
Mercadier
committed
Inputs:
data: xarray Dataset
rollingWindow: length of running average to calculate E_fast_avg
plot: boolean, plot the calibration output
Mercadier
committed
Output:
factors: numpy ndarray of shape 1 x 2 containing
[XTD10 calibration factor, SCS calibration factor]
'''
Mercadier
committed
XTD10_factor = np.nan
SCS_factor = np.nan
noSCS = noXTD10 = False
if 'SCS_XGM' not in data:
print('no SCS XGM data. Skipping calibration for SCS XGM')
noSCS = True
if 'XTD10_XGM' not in data:
print('no XTD10 XGM data. Skipping calibration for XTD10 XGM')
Mercadier
committed
noXTD10 = True
if noSCS and noXTD10:
return np.array([XTD10_factor, SCS_factor])
if not noSCS and noXTD10:
print('XTD10 data is needed to calibrate SCS XGM.')
return np.array([XTD10_factor, SCS_factor])
start = 0
stop = None
npulses = data['npulses_sase3']
ntrains = npulses.shape[0]
# First, in case of change in number of pulses, locate a region where
# the number of pulses is maximum.
if not np.all(npulses == npulses[0]):
print('Warning: Number of pulses per train changed during the run!')
start = np.argmax(npulses.values)
stop = ntrains + np.argmax(npulses.values[::-1]) - 1
if stop - start < rollingWindow:
print('not enough consecutive data points with the largest number of pulses per train')
start += rollingWindow
stop = np.min((ntrains, stop+rollingWindow))
# Calculate SASE3 slow data
sa3contrib = saseContribution(data, 'sase3', 'XTD10_XGM')
SA3_SLOW = data['XTD10_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*sa3contrib/data['npulses_sase3']
SA1_SLOW = data['XTD10_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*(1-sa3contrib)/data['npulses_sase1']
Mercadier
committed
# Calibrate XTD10 XGM with all signal from SASE1 and SASE3
if not noXTD10:
xgm_avg = selectSASEinXGM(data, 'sase3', 'XTD10_XGM').mean(axis=1)
rolling_sa3_xgm = xgm_avg.rolling(trainId=rollingWindow).mean()
ratio = SA3_SLOW/rolling_sa3_xgm
Mercadier
committed
XTD10_factor = ratio[start:stop].mean().values
print('calibration factor XTD10 XGM: %f'%XTD10_factor)
# Calibrate SCS XGM with SASE3-only contribution
if not noSCS:
Mercadier
committed
SCS_SLOW = data['SCS_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*sa3contrib/data['npulses_sase3']
scs_sase3_fast = selectSASEinXGM(data, 'sase3', 'SCS_XGM').mean(axis=1)
meanFast = scs_sase3_fast.rolling(trainId=rollingWindow).mean()
Mercadier
committed
SCS_factor = ratio[start:stop].median().values
print('calibration factor SCS XGM: %f'%SCS_factor)
Mercadier
committed
if noSCS ^ noXTD10:
plt.figure(figsize=(8,4))
else:
plt.figure(figsize=(8,8))
Mercadier
committed
plt.title('E[uJ] = %.2f x IntensityTD' %(XTD10_factor))
plt.plot(SA3_SLOW, label='SA3 slow', color='C1')
Mercadier
committed
plt.plot(rolling_sa3_xgm*XTD10_factor,
label='SA3 fast signal rolling avg', color='C4')
Mercadier
committed
plt.plot(xgm_avg*XTD10_factor, label='SA3 fast signal train avg', alpha=0.2, color='C4')
plt.ylabel('Energy [uJ]')
plt.xlabel('train in run')
plt.legend(loc='upper left', fontsize=10)
plt.twinx()
plt.plot(SA1_SLOW, label='SA1 slow', alpha=0.2, color='C2')
plt.ylabel('SA1 slow signal [uJ]')
plt.legend(loc='lower right', fontsize=10)
plt.subplot(212)
Mercadier
committed
plt.title('E[uJ] = %.2g x HAMP' %SCS_factor)
plt.plot(SCS_SLOW, label='SCS slow', color='C1')
Mercadier
committed
plt.plot(meanFast*SCS_factor, label='SCS HAMP rolling avg', color='C2')
plt.ylabel('Energy [uJ]')
plt.xlabel('train in run')
Mercadier
committed
plt.plot(scs_sase3_fast*SCS_factor, label='SCS HAMP train avg', alpha=0.2, color='C2')
plt.legend(loc='upper left', fontsize=10)
Mercadier
committed
return np.array([XTD10_factor, SCS_factor])
Laurent Mercadier
committed
def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=1, t_offset=None, npulses=None):
''' Computes peak integration from raw MCP traces.
Inputs:
data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw')
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
mcp: MCP channel number
t_offset: index separation between two pulses. Needed if bunch
pattern info is not available. If None, checks the pulse
pattern and determine the t_offset assuming mininum pulse
separation of 220 ns and digitizer resolution of 2 GHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch pattern (field 'npulses_sase3')
Output:
results: DataArray with dims trainId x max(sase3 pulses)
'''
keyraw = 'MCP{}raw'.format(mcp)
if keyraw not in data:
raise ValueError("Source not found: {}!".format(keyraw))
if npulses is None:
Laurent Mercadier
committed
npulses = int(data['npulses_sase3'].max().values)
sa3 = data['sase3'].where(data['sase3']>1)
if npulses > 1:
#Calculate the number of pulses between two lasing pulses (step)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
#multiply by elementary samples length (220 ns @ 2 GHz = 440)
Laurent Mercadier
committed
t_offset = 440 * step
Laurent Mercadier
committed
t_offset = 1
results = xr.DataArray(np.zeros((data.trainId.shape[0], npulses)), coords=data[keyraw].coords,
dims=['trainId', 'MCP{}fromRaw'.format(mcp)])
for i in range(npulses):
a = intstart + t_offset*i
b = intstop + t_offset*i
bkga = bkgstart + t_offset*i
bkgb = bkgstop + t_offset*i
if b > data.dims['samplesId']:
break
bg = np.outer(np.median(data[keyraw][:,bkga:bkgb], axis=1), np.ones(b-a))
results[:,i] = np.trapz(data[keyraw][:,a:b] - bg, axis=1)
return results
def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
bkgstart=None, bkgstop=None, t_offset=None, npulses=None,
stride=1):
''' Extract peak-integrated data from TIM where pulses are from SASE3 only.
If use_apd is False it calculates integration from raw traces.
The missing values, in case of change of number of pulses, are filled
with NaNs. If no bunch pattern info is available, the function assumes
that SASE 3 comes first and that the number of pulses is fixed in both
data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw')
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: number of ADC samples between two pulses
mcp: MCP channel number
Laurent Mercadier
committed
npulses: int, optional. Number of pulses to compute. Required if
no bunch pattern info is available.
stride: int, optional. Used to select pulses in the APD array if
no bunch pattern info is available.
Output:
tim: DataArray of shape trainId only for SASE3 pulses x N
with N=max(number of pulses per train)
'''
#1. case where no bunch pattern is available:
if 'sase3' not in data:
Laurent Mercadier
committed
print('Missing bunch pattern info!\n')
if npulses is None:
raise TypeError('npulses argument is required when bunch pattern ' +
'info is missing.')
print('Retrieving {} SASE 3 pulses assuming that '.format(npulses) +
'SASE 3 pulses come first.')
tim = data[f'MCP{mcp}apd'][:,:npulses:stride]
else:
tim = mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=mcp,
t_offset=t_offset, npulses=npulses)
return tim
#2. If bunch pattern available, define a mask that corresponds to the SASE 3 pulses
Laurent Mercadier
committed
sa3 = data['sase3'].where(data['sase3']>1, drop=True)
sa3 -= sa3[0,0]
#2.1 case where apd is used:
if use_apd:
pulseId = 'apdId'
pulseIdDim = data.dims['apdId']
initialDelay = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.initialDelay.value')[0].values
upperLimit = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.upperLimit.value')[0].values
#440 = samples between two pulses @4.5 MHz with ADQ412 digitizer:
period = int((upperLimit - initialDelay)/440)
#display some warnings if apd parameters do not match pulse pattern:
period_from_bunch_pattern = int(np.nanmin(np.diff(sa3)))
if period > period_from_bunch_pattern:
print(f'Warning: apd parameter was set to record 1 pulse out of {period} @ 4.5 MHz ' +
f'but XFEL delivered 1 pulse out of {period_from_bunch_pattern}.')
maxPulses = data['npulses_sase3'].max().values
if period*pulseIdDim < period_from_bunch_pattern*(maxPulses-1):
print(f'Warning: Number of pulses and/or rep. rate in apd parameters were set ' +
f'too low ({pulseIdDim})to record the {maxPulses} SASE 3 pulses')
peaks = data[f'MCP{mcp}apd']
#2.2 case where integration is performed on raw trace:
else:
pulseId = f'MCP{mcp}fromRaw'
pulseIdDim = int(np.max(sa3).values) + 1
period = int(np.nanmin(np.diff(sa3)))
peaks = mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=mcp, t_offset=period*440,
npulses=pulseIdDim)
sa3 = sa3/period
#2.3 track the changes of pulse patterns and the indices at which they occured (invAll)
idxList, inv = np.unique(sa3, axis=0, return_inverse=True)
mask = xr.DataArray(np.zeros((data.dims['trainId'], pulseIdDim), dtype=bool),
dims=['trainId', pulseId],
coords={'trainId':data.trainId,
pulseId:np.arange(pulseIdDim)})
mask = mask.sel(trainId=sa3.trainId)
for i,idxApd in enumerate(idxList):
idxApd = idxApd[idxApd>=0].astype(int)
idxTid = inv==i
mask[idxTid, idxApd] = True
peaks = peaks.where(mask, drop=True)
peaks = peaks.assign_coords({pulseId:np.arange(peaks[pulseId].shape[0])})
return peaks
def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intstart=None,
Laurent Mercadier
committed
intstop=None, bkgstart=None, bkgstop=None, t_offset=None, npulses_apd=None):
Laurent Mercadier
committed
''' Calibrate TIM signal (Peak-integrated signal) to the slow ion signal of SCS_XGM
(photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value').
The aim is to find F so that E_tim_peak[uJ] = F x TIM_peak. For this, we want to
match the SASE3-only average TIM pulse peak per train (TIM_avg) to the slow XGM
signal E_slow.
Since E_slow is the average energy per pulse over all SASE1 and SASE3
pulses (N1 and N3), we first extract the relative contribution C of the SASE3 pulses
by looking at the pulse-resolved signals of the SA3_XGM in the tunnel.
There, the signal of SASE1 is usually strong enough to be above noise level.
Let TIM_avg be the average of the TIM pulses (SASE3 only).
The calibration factor is then defined as: F = E_slow * C * (N1+N3) / ( N3 * TIM_avg ).
If N3 changes during the run, we locate the indices for which N3 is maximum and define
a window where to apply calibration (indices start/stop).
Warning: the calibration does not include the transmission by the KB mirrors!
Inputs:
data: xarray Dataset
rollingWindow: length of running average to calculate TIM_avg
Laurent Mercadier
committed
mcp: MCP channel
plot: boolean. If True, plot calibration results.
Laurent Mercadier
committed
use_apd: boolean. If False, the TIM pulse peaks are extract from raw traces using
getTIMapd
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: index separation between two pulses
npulses_apd: number of pulses
Output:
F: float, TIM calibration factor.
'''
start = 0
stop = None
npulses = data['npulses_sase3']
ntrains = npulses.shape[0]
Laurent Mercadier
committed
if not np.all(npulses == npulses[0]):
start = np.argmax(npulses.values)
stop = ntrains + np.argmax(npulses.values[::-1]) - 1
if stop - start < rollingWindow:
print('not enough consecutive data points with the largest number of pulses per train')
start += rollingWindow
stop = np.min((ntrains, stop+rollingWindow))
filteredTIM = getTIMapd(data, mcp, use_apd, intstart, intstop, bkgstart, bkgstop, t_offset, npulses_apd)
sa3contrib = saseContribution(data, 'sase3', 'XTD10_XGM')
Laurent Mercadier
committed
avgFast = filteredTIM.mean(axis=1).rolling(trainId=rollingWindow).mean()
ratio = ((data['npulses_sase3']+data['npulses_sase1']) *
data['SCS_photonFlux'] * sa3contrib) / (avgFast*data['npulses_sase3'])
Laurent Mercadier
committed
F = float(ratio[start:stop].median().values)
if plot:
fig = plt.figure(figsize=(8,5))
ax = plt.subplot(211)
ax.set_title('E[uJ] = {:2e} x TIM (MCP{})'.format(F, mcp))
ax.plot(data['SCS_photonFlux'], label='SCS XGM slow (all SASE)', color='C0')
slow_avg_sase3 = data['SCS_photonFlux']*(data['npulses_sase1']
+data['npulses_sase3'])*sa3contrib/data['npulses_sase3']
ax.plot(slow_avg_sase3, label='SCS XGM slow (SASE3 only)', color='C1')
ax.plot(avgFast*F, label='Calibrated TIM rolling avg', color='C2')
ax.legend(loc='upper left', fontsize=8)
ax.set_ylabel('Energy [$\mu$J]', size=10)
ax.plot(filteredTIM.mean(axis=1)*F, label='Calibrated TIM train avg', alpha=0.2, color='C9')
ax.legend(loc='best', fontsize=8, ncol=2)
plt.xlabel('train in run')
ax = plt.subplot(234)
xgm_fast = selectSASEinXGM(data)
ax.scatter(filteredTIM, xgm_fast, s=5, alpha=0.1, rasterized=True)
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
fit, cov = np.polyfit(filteredTIM.values.flatten(),xgm_fast.values.flatten(),1, cov=True)
y=np.poly1d(fit)
x=np.linspace(filteredTIM.min(), filteredTIM.max(), 10)
ax.plot(x, y(x), lw=2, color='r')
ax.set_ylabel('Raw HAMP [$\mu$J]', size=10)
ax.set_xlabel('TIM (MCP{}) signal'.format(mcp), size=10)
ax.annotate(s='y(x) = F x + A\n'+
'F = %.3e\n$\Delta$F/F = %.2e\n'%(fit[0],np.abs(np.sqrt(cov[0,0])/fit[0]))+
'A = %.3e'%fit[1],
xy=(0.5,0.6), xycoords='axes fraction', fontsize=10, color='r')
print('TIM calibration factor: %e'%(F))
ax = plt.subplot(235)
ax.hist(filteredTIM.values.flatten()*F, bins=50, rwidth=0.8)
ax.set_ylabel('number of pulses', size=10)
ax.set_xlabel('Pulse energy MCP{} [uJ]'.format(mcp), size=10)
ax.set_yscale('log')
ax = plt.subplot(236)
if not use_apd:
pulseStart = intstart
pulseStop = intstop
else:
pulseStart = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.pulseStart.value')[0].values
pulseStop = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.pulseStop.value')[0].values
if 'MCP{}raw'.format(mcp) not in data:
tid, data = data.attrs['run'].train_from_index(0)
trace = data['SCS_UTC1_ADQ/ADC/1:network']['digitizers.channel_1_D.raw.samples']
print('no raw data for MCP{}. Loading trace from MCP1'.format(mcp))
label_trace='MCP1 Voltage [V]'
else:
trace = data['MCP{}raw'.format(mcp)][0]
label_trace='MCP{} Voltage [V]'.format(mcp)
ax.plot(trace[:pulseStop+25], 'o-', ms=2, label='trace')
ax.axvspan(pulseStart, pulseStop, color='C2', alpha=0.2, label='APD region')
ax.axvline(pulseStart, color='gray', ls='--')
ax.axvline(pulseStop, color='gray', ls='--')
ax.set_xlim(pulseStart - 25, pulseStop + 25)
ax.set_ylabel(label_trace, size=10)
ax.set_xlabel('sample #', size=10)
ax.legend(fontsize=8)
plt.tight_layout()
return F
Laurent Mercadier
committed
''' TIM calibration table
Dict with key= photon energy and value= array of polynomial coefficients for each MCP (1,2,3).
The polynomials correspond to a fit of the logarithm of the calibration factor as a function
of MCP voltage. If P is a polynomial and V the MCP voltage, the calibration factor (in microjoule
per APD signal) is given by -exp(P(V)).
This table was generated from the calibration of March 2019, proposal 900074, semester 201930,
runs 69 - 111 (Ni edge): https://in.xfel.eu/elog/SCS+Beamline/2323
runs 113 - 153 (Co edge): https://in.xfel.eu/elog/SCS+Beamline/2334
runs 163 - 208 (Fe edge): https://in.xfel.eu/elog/SCS+Beamline/2349
'''
tim_calibration_table = {
705.5: np.array([
[-6.85344690e-12, 5.00931986e-08, -1.27206912e-04, 1.15596821e-01, -3.15215367e+01],
[ 1.25613942e-11, -5.41566381e-08, 8.28161004e-05, -7.27230153e-02, 3.10984925e+01],
[ 1.14094964e-12, 7.72658935e-09, -4.27504907e-05, 4.07253378e-02, -7.00773062e+00]]),
779: np.array([
[ 4.57610777e-12, -2.33282497e-08, 4.65978738e-05, -6.43305156e-02, 3.73958623e+01],
[ 2.96325102e-11, -1.61393276e-07, 3.32600044e-04, -3.28468195e-01, 1.28328844e+02],
[ 1.14521506e-11, -5.81980336e-08, 1.12518434e-04, -1.19072484e-01, 5.37601559e+01]]),
851: np.array([
[ 3.15774215e-11, -1.71452934e-07, 3.50316512e-04, -3.40098861e-01, 1.31064501e+02],
[5.36341958e-11, -2.92533156e-07, 6.00574534e-04, -5.71083140e-01, 2.10547161e+02],
[ 3.69445588e-11, -1.97731342e-07, 3.98203522e-04, -3.78338599e-01, 1.41894119e+02]])
}
Laurent Mercadier
committed
def timFactorFromTable(voltage, photonEnergy, mcp=1):
''' Returns an energy calibration factor for TIM integrated peak signal (APD)
according to calibration from March 2019, proposal 900074, semester 201930,
runs 69 - 111 (Ni edge): https://in.xfel.eu/elog/SCS+Beamline/2323
runs 113 - 153 (Co edge): https://in.xfel.eu/elog/SCS+Beamline/2334
runs 163 - 208 (Fe edge): https://in.xfel.eu/elog/SCS+Beamline/2349
Uses the tim_calibration_table declared above.
Inputs:
voltage: MCP voltage in volts.
photonEnergy: FEL photon energy in eV. Calibration factor is linearly
interpolated between the known values from the calibration table.
mcp: MCP channel (1, 2, or 3).
Output:
f: calibration factor in microjoule per APD signal
'''
energies = np.sort([key for key in tim_calibration_table])
if photonEnergy > energies.max():
photonEnergy = energies.max()
elif photonEnergy < energies.min():
photonEnergy = energies.min()
else:
idx = np.searchsorted(energies, photonEnergy) - 1
polyA = np.poly1d(tim_calibration_table[energies[idx]][mcp-1])
polyB = np.poly1d(tim_calibration_table[energies[idx+1]][mcp-1])
fA = -np.exp(polyA(voltage))
fB = -np.exp(polyB(voltage))
f = fA + (fB-fA)/(energies[idx+1]-energies[idx])*(photonEnergy - energies[idx])
return f
poly = np.poly1d(tim_calibration_table[photonEnergy][mcp-1])
f = -np.exp(poly(voltage))
return f
def checkTimApdWindow(data, mcp=1, use_apd=True, intstart=None, intstop=None):
''' Plot the first and last pulses in MCP trace together with
the window of integration to check if the pulse integration
is properly calculated. If the number of pulses changed during
the run, it selects a train where the number of pulses was
maximum.
Inputs:
data: xarray Dataset
mcp: MCP channel (1, 2, 3 or 4)
use_apd: if True, gets the APD parameters from the digitizer
device. If False, uses intstart and intstop as boundaries
and uses the bunch pattern to determine the separation
between two pulses.
intstart: trace index of integration start of the first pulse
intstop: trace index of integration stop of the first pulse
Output:
Plot
'''
mcpToChannel={1:'D', 2:'C', 3:'B', 4:'A'}
apdChannels={1:3, 2:2, 3:1, 4:0}
npulses_max = data['npulses_sase3'].max().values
tid = data['npulses_sase3'].where(data['npulses_sase3'] == npulses_max,

Loïc Le Guyader
committed
drop=True).trainId.values
if 'MCP{}raw'.format(mcp) not in data:
print('no raw data for MCP{}. Loading average trace from MCP{}'.format(mcp, mcp))
trace = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1:network',
'digitizers.channel_1_{}.raw.samples'.format(mcpToChannel[mcp])
).sel({'trainId':tid}).mean(dim='trainId')

Loïc Le Guyader
committed
trace = data['MCP{}raw'.format(mcp)].sel({'trainId':tid}).mean(dim='trainId')
if use_apd:
pulseStart = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.pulseStart.value'.format(apdChannels[mcp]))[0].values
pulseStop = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.pulseStop.value'.format(apdChannels[mcp]))[0].values
initialDelay = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.initialDelay.value'.format(apdChannels[mcp]))[0].values
upperLimit = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.upperLimit.value'.format(apdChannels[mcp]))[0].values
else:
pulseStart = intstart
pulseStop = intstop
if npulses_max > 1:
sa3 = data['sase3'].where(data['sase3']>1)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
nsamples = 440 * step
else:
nsamples = 0
fig, ax = plt.subplots(figsize=(5,3))
ax.plot(trace[:pulseStop+25], color='C1', label='first pulse')
ax.axvspan(pulseStart, pulseStop, color='k', alpha=0.1, label='APD region')
ax.axvline(pulseStart, color='gray', ls='--')
ax.axvline(pulseStop, color='gray', ls='--')
ax.set_xlim(pulseStart-25, pulseStop+25)
ax.locator_params(axis='x', nbins=4)
ax.set_ylabel('MCP{} Voltage [V]'.format(mcp))
ax.set_xlabel('First pulse sample #')
if npulses_max > 1:
pulseStart = pulseStart + nsamples*(npulses_max-1)
pulseStop = pulseStop + nsamples*(npulses_max-1)
ax2 = ax.twiny()
ax2.plot(range(pulseStart-25,pulseStop+25), trace[pulseStart-25:pulseStop+25],
color='C4', label='last pulse')
ax2.locator_params(axis='x', nbins=4)
ax2.set_xlabel('Last pulse sample #')
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc=0)
else:
ax.legend(loc='lower left')
plt.tight_layout()
def matchXgmTimPulseId(data, use_apd=True, intstart=None, intstop=None,
bkgstart=None, bkgstop=None, t_offset=None,
npulses=None, sase3First=True, stride=1):
''' Function to match XGM pulse Id with TIM pulse Id.
Inputs:
data: xarray Dataset containing XGM and TIM data
use_apd: bool. If True, uses the digitizer APD ('MCP[1,2,3,4]apd').
If False, peak integration is performed from raw traces.
All following parameters are needed in this case.
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: index separation between two pulses
Laurent Mercadier
committed
npulses: number of pulses to compute. Required if no bunch
pattern info is available
sase3First: bool, needed if bunch pattern is missing.
stride: int, used to select pulses in the TIM APD array if
no bunch pattern info is available.
Mercadier
committed
xr DataSet containing XGM and TIM signals with the share d
dimension 'sa3_pId'. Raw traces, raw XGM and raw APD are dropped.
Mercadier
committed
dropList = []
mergeList = []
ndata = cleanXGMdata(data, npulses, sase3First)
for mcp in range(1,5):
if 'MCP{}apd'.format(mcp) in data or 'MCP{}raw'.format(mcp) in data:
MCPapd = getTIMapd(data, mcp=mcp, use_apd=use_apd, intstart=intstart,
intstop=intstop,bkgstart=bkgstart, bkgstop=bkgstop,
t_offset=t_offset, npulses=npulses,
stride=stride).rename('MCP{}apd'.format(mcp))
Mercadier
committed
MCPapd = MCPapd.rename({'apdId':'sa3_pId'})
Mercadier
committed
MCPapd = MCPapd.rename({'MCP{}fromRaw'.format(mcp):'sa3_pId'})
mergeList.append(MCPapd)
Mercadier
committed
if 'MCP{}raw'.format(mcp) in ndata:
dropList.append('MCP{}raw'.format(mcp))
if 'MCP{}apd'.format(mcp) in data:
dropList.append('MCP{}apd'.format(mcp))
Mercadier
committed
mergeList.append(ndata.drop(dropList))
subset = xr.merge(mergeList, join='inner')
for k in ndata.attrs.keys():
subset.attrs[k] = ndata.attrs[k]
Mercadier
committed
def fastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop,
Laurent Mercadier
committed
period=None, npulses=None, source='scs_ppl',
usePeakValue=False, peakType='pos'):
''' Computes peak integration from raw FastADC traces.
Inputs:
data: xarray Dataset containing FastADC raw traces (e.g. 'FastADC1raw')
channel: FastADC channel number
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
period: number of samples between two pulses. Needed if bunch
pattern info is not available. If None, checks the pulse
pattern and determine the period assuming a resolution of
9.23 ns per sample which leads to 24 samples between
two bunches @ 4.5 MHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch patter (field 'npulses_sase3')
source: str, nature of the pulses, 'sase[1,2 or 3]', or 'scs_ppl',
or any name. Used to give name to the peak Id dimension.
usePeakValue: bool, if True takes the peak value of the signal,
otherwise integrates over integration region.
Laurent Mercadier
committed
peakType: str, 'pos' or 'neg'. Used if usePeakValue is True to
indicate if min or max value should be extracted.
Output:
results: DataArray with dims trainId x max(sase3 pulses)
'''
keyraw = 'FastADC{}raw'.format(channel)
if keyraw not in data:
raise ValueError("Source not found: {}!".format(keyraw))
Laurent Mercadier
committed
if npulses is None or period is None:
indices, npulses_bp, mask = tb.extractBunchPattern(runDir=data.attrs['run'],
key=source)
if npulses is None:
npulses = int(npulses_bp.max().values)
if period is None:
indices = indices_bp.where(indices_bp>1)
if npulses > 1:
#Calculate the number of pulses between two lasing pulses (step)
step = indices.where(npulses_bp>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
#multiply by elementary pulse length (221.5 ns / 9.23 ns = 24 samples)
period = 24 * step
else:
period = 1
pulseId = source
Laurent Mercadier
committed
if source=='scs_ppl':
pulseId = 'ol_pId'
if 'sase' in source:
pulseId = f'sa{source[4]}_pId'
results = xr.DataArray(np.empty((data.trainId.shape[0], npulses)), coords=data[keyraw].coords,
Laurent Mercadier
committed
dims=['trainId', pulseId])
for i in range(npulses):
a = intstart + period*i
b = intstop + period*i
bkga = bkgstart + period*i
bkgb = bkgstop + period*i
bg = np.outer(np.median(data[keyraw][:,bkga:bkgb], axis=1), np.ones(b-a))
if usePeakValue:
if peakType=='pos':
val = np.max(data[keyraw][:,a:b] - bg, axis=1)
if peakType=='neg':
val = np.min(data[keyraw][:,a:b] - bg, axis=1)
else:
val = np.trapz(data[keyraw][:,a:b] - bg, axis=1)
results[:,i] = val
return results
Laurent Mercadier
committed
def autoFindFastAdcPeaks(data, channel=5, window='large', usePeakValue=False,
source='scs_ppl', display=False, plot=False):
''' Automatically finds peaks in channel of Fast ADC trace, a minimum width of 4
samples. The find_peaks function and determination of the peak integration
region and baseline subtraction is optimized for typical photodiode signals
of the SCS instrument (ILH, FFT reflectometer, FFT diag stage).
Inputs:
data: xarray Dataset containing Fast ADC traces
key: data key of the array of traces
window: 'small' or 'large': defines the width of the integration region
centered on the peak.
usePeakValue: bool, if True takes the peak value of the signal,
otherwise integrates over integration region.
display: bool, displays info on the pulses found
plot: bool, plots regions of integration of the first pulse in the trace
Output:
peaks: DataArray of the integrated peaks
'''
key = f'FastADC{channel}raw'
if key not in data:
raise ValueError(f'{key} not found in data set')
#average over the 100 first traces to get at least one train with signal
trace = data[key].isel(trainId=slice(0,100)).mean(dim='trainId').values
if plot:
trace_plot = np.copy(trace)
#subtract baseline and check if peaks are positive or negative
bl = np.median(trace)
trace_no_bl = trace - bl
if np.max(trace_no_bl) >= np.abs(np.min(trace_no_bl)):
posNeg = 'positive'
else:
posNeg = 'negative'
trace_no_bl *= -1
trace = bl + trace_no_bl
threshold = bl + np.max(trace_no_bl) / 2
#find peaks
centers, peaks = find_peaks(trace, height=threshold, width=(4, None))
c = centers[0]
w = np.average(peaks['widths']).astype(int)
period = np.median(np.diff(centers)).astype(int)
npulses = centers.shape[0]
if window not in ['small', 'large']:
raise ValueError(f"'window argument should be either 'small' or 'large', not {window}")
if window=='small':
intstart = int(c - w/4) + 1
intstop = int(c + w/4) + 1
if window=='large':
intstart = int(peaks['left_ips'][0])
intstop = int(peaks['right_ips'][0]) + w
bkgstop = int(peaks['left_ips'][0])-5
bkgstart = bkgstop - 10
if display:
print(f'Found {npulses} {posNeg} pulses, avg. width={w}, period={period} samples, ' +
f'rep. rate={1e6/(9.230769*period):.3f} kHz')
fAdcPeaks = fastAdcPeaks(data, channel=channel, intstart=intstart, intstop=intstop,
bkgstart=bkgstart, bkgstop=bkgstop, period=period, npulses=npulses,
Laurent Mercadier
committed
source=source, usePeakValue=usePeakValue, peakType=posNeg[:3])
if plot:
plt.figure()
for i in range(npulses):